Temporal Stochasticity Leads to Nondeterministic Chaos in a Model for Blood Cell Production

  • Ramit Mehr
  • Zvia Agur
Part of the Institute for Nonlinear Science book series (INLS)


All types of blood cells are formed by differentiation from a small population of pluripotent stem cells in the bone marrow. This population should maintain the balance between self-renewal and differentiation, even under severe perturbations, such as the massive Cell. death caused by chemotherapy or irradiation. We constructed a cellular-automata model for bone marrow dynamics that retrieves its homeostatic capabilities even under periodic perturbations with constant or random amplitude. However, temporally stochastic perturbations result in a chaotic-like behavior. Several methods of analysis failed to distinguish between the time series in this case and a chaotic time series, although the chaotic-like behavior has no deterministic source.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    R. Mehr and Z. Agur, BioSystems 26, 231 (1992).CrossRefGoogle Scholar
  2. [2]
    M.A.S. Moore, M.O. Muench, D.J. Warren, and J. Laver, in Molecular Control of Hemopoiesis, edited by G. Bock and J. Marsh (Wiley, New York, 1990).Google Scholar
  3. [3]
    D. Metcalf, Nature 339, 27(1989).ADSCrossRefGoogle Scholar
  4. [4]
    D. Zipori, in Hematopoiesis, Long Term Effects of Chemotherapy and Radiation, vol. 8, Ch. 2, edited N.G. Testa and R.P. Gale (Marcel Dekker, New York, 1988).Google Scholar
  5. [5]
    B.I. Lord and R. Schofield, Lect. Notes Biomath. 38, 9 (1979).CrossRefGoogle Scholar
  6. [6]
    D. Zipori, in The Biology of Hemopoiesis, edited by N. Dainiak, E.P. Cronkite, R. McCaffrey, and R.K. Shadduck Progress in Clinical and Biological Research Series, No. 352, Proc. of 15th F. Stohlman Jr. Memorial Symposium, Cambridge, MA, October 15–20,1989 (Wiley-Liss, New York, 1990), p.115.Google Scholar
  7. [7]
    D. Zipori, Cancer Cells 2(7), 205 (1990).Google Scholar
  8. [8]
    H.E. Wichmann, M. Loeffler, and S. Schmitz, Blood Cells 14, 411 (1988).Google Scholar
  9. [9]
    J.W.M. Visser and D.W. Van Bekkum, Exp. Hematol. 18(3), 248 (1990).Google Scholar
  10. [10]
    I. Bertoncello, T.R. Bradley, and S.M. Watt, Exp. Hematol. 19(2), 95 (1991).Google Scholar
  11. [11]
    I. Bertoncello, T.R. Bradley, G.S. Hodgson, and J.M. Dunlop, Exp. Hematol. 19(3), 174 (1991).Google Scholar
  12. [12]
    M. Kobayashi, A., Mullbacher, P. Waring, and A.J. Hapel, Eur. J. Haematol. 46(4), 205 (1991).CrossRefGoogle Scholar
  13. [13]
    H.J. Sutherland, P.M. Lansdorp, D.H. Henkelman, et al., Proc. Nat. Acad. Sci 87, 3584 (1990).ADSCrossRefGoogle Scholar
  14. [14]
    S. Okada, T. Suda, J. Suda, N. Tokuyama, K. Nagayoshi, Y. Miura, and H. Nakauchi, Exp. Hematol. 19(1), 42 (1991).Google Scholar
  15. [15]
    B.I. Lord and N.G. Testa, in Hematopoiesis, Long Term Effects of Chemotherapy and Radiation, vol. 8, edited by N.G. Testa and R.P. Gale (Marcel Dekker, New York, 1988), pp. 1–26.Google Scholar
  16. [16]
    R. Schofield, Blood Cells 4, 7 (1978).Google Scholar
  17. [17]
    G.J. Spangrude, S. Heimfeld, and I.L. Weissman, Science 241, 58 (1988).ADSCrossRefGoogle Scholar
  18. [18]
    L. Glass and M.C. Mackey, Ann. N.Y. Acad. Sci. 316,214 (1979).ADSCrossRefGoogle Scholar
  19. [19]
    W.P. Hammond, T.C. Boone, R.E. Donahue, L.M. Souza, and D.C. Dale, Blood 76(3), 523 (1990).Google Scholar
  20. [20]
    S. Tsunogake, S. Nagashima, R. Maekawa, N. Takano, H. Kajitani, K. Saito, H. Enokihara, S. Furusawa, and H. Shishido, Int. J. Hematol. 54(3), 251 (1991).Google Scholar
  21. [21]
    K. Atkinson, Bone Marrow Transplant. 5, 209 (1990).Google Scholar
  22. [22]
    Z. Agur, Ann. N.Y. Acad. Sci. 504, 274 (1986).ADSCrossRefGoogle Scholar
  23. [23]
    Z. Agur, Lancet 334(ii), 734 (1989).Google Scholar
  24. [24]
    Z. Agur, in Biomedical Modelling and Simulation, edited by J. Eisenfeld and D.S. Levine (J.C. Baltzer AG, Scientific Publishing Co., IMACS, 1989), pp 59–61.Google Scholar
  25. [25]
    Z. Agur, R. Arnon, and B. Schechter, Math. Biosci. 92, 1 (1988).CrossRefzbMATHGoogle Scholar
  26. [26]
    Z. Agur, R. Arnon, and B. Schechter, Eur. J. Cancer 28A(6/7), 1085 (1992).CrossRefGoogle Scholar
  27. [27]
    L. Cojocaru and Z. Agur, Math. Biosci. 109, 85 (1992).CrossRefzbMATHGoogle Scholar
  28. [28]
    G. Webb, Proceedings of the World Congress on Nonlinear Analysis (1993).Google Scholar
  29. [29]
    R. Mehr, M. Fridkis-Hareli, L. Abel, L. Segel, and A. Globerson, J. Theor. Biol. 177, 181 (1995).CrossRefGoogle Scholar
  30. [30]
    H.E. Broxmeyer, S. Cooper, L. Lu, G. Hangoc, D. Anderson, D. Cosman, S.D. Lyman, and D.E. Williams, Blood 77(10), 2142 (1991).Google Scholar
  31. [31]
    P.J. Quesenberry, H.E. McGrath, M.E. Williams, B.E. Robinson, D.H. Deacon, S. Clark, D. Urdal, and I.K. McNiece, Exp. Hematol. 19(1), 35 (1991).Google Scholar
  32. [32]
    I.K. McNiece, K.E. Langley, and K.M. Zsebo, J. Immunol. 146(11), 3785 (1991).Google Scholar
  33. [33]
    I.D. Bernstein, R.G. Andrews, and K.M. Zsebo, Blood 77(11), 2316 (1991).Google Scholar
  34. [34]
    G.J. Graham, E.G. Wright, D. Donaldson, S. Lorimore, and I.B. Pragnell, Exp. Hematol. 18(6), 713 (1990).Google Scholar
  35. [35]
    G.J. Graham, E.G. Wright, R. Hewick, S.D. Wolpe, N.M. Wilkie, D. Donaldson, S. Lorimore, and I.B. Pragnell, Nature 344, 442 (1990).ADSCrossRefGoogle Scholar
  36. [36]
    C.S. Johnson, S.C. Pourbohloul, and P. Furmanski, Exp. Hematol. 19(2), 101 (1991).Google Scholar
  37. [37]
    B. Bungart, M. Loeffler, H. Goris, B. Dontje, V. Diehl, and W. Nijhof, Br. J. Hematol. 76(2), 174 (1990).CrossRefGoogle Scholar
  38. [38]
    E. Nečas and V. Znojil, Cell Tissue Kinet. 21, 73 (1988).Google Scholar
  39. [39]
    F. Hauser and E. Nečas, Cell Tissue Kinet. 21, 81 (1988).Google Scholar
  40. [40]
    P.M. Gade and R.E. Amritkar, Phys. Rev. Lett. 65, 389 (1990).MathSciNetADSCrossRefzbMATHGoogle Scholar
  41. [41]
    J.P. Eckmann and D. Ruelle, Rev. Mod. Phys. 57, 617 (1985).MathSciNetADSCrossRefGoogle Scholar
  42. [42]
    S. Renais and R. Rohwer, J. Stat. Phys. 58, 825 (1990).ADSCrossRefGoogle Scholar
  43. [43]
    H. Sompolinski, A. Crisanti, and H.J. Sommers, Phys. Rev. Lett. 61, 259 (1988).MathSciNetADSCrossRefGoogle Scholar
  44. [44]
    S.E. Newhouse, Topology 13, 9 (1974).MathSciNetCrossRefzbMATHGoogle Scholar
  45. [45]
    S.E. Newhouse, Publ. Math. IHES 50, 101 (1979).MathSciNetzbMATHGoogle Scholar
  46. [46]
    S.E. Newhouse, in Dynamical Systems, CIME Lectures Bressanone, Italy, June 1978. Progress in Math., No. 8 (Birkhauser-Boston, Boston, 1980), pp.1–114.Google Scholar
  47. [47]
    A. Babloyantz and A. Destexhe, Proc. Nat. Acad. Sci. 83, 3513 (1986).ADSCrossRefGoogle Scholar
  48. [48]
    C.A. Skarda and W.J. Freeman, Behav. Brain Sci. 10, 161 (1987).CrossRefGoogle Scholar
  49. [49]
    R. Pool, Science 243, 604 (1989).ADSCrossRefGoogle Scholar
  50. [50]
    Y. Lenbury and P. Pacheenburawana, Biosystems 26(2), 117 (1991).CrossRefGoogle Scholar
  51. [51]
    T.A. Denton, G.A. Diamond, R.H. Helfant, S. Khan, and H. Karagueuzian, Am. Heart J. 120, 1419 (1990).CrossRefGoogle Scholar
  52. [52]
    F.C. Hoppensteadt, Proc. Nat. Acad. Sci. 86(9), 2991 (1989).MathSciNetADSCrossRefzbMATHGoogle Scholar
  53. [53]
    L. Glass and C.P. Malta, J. Theor. Biol. 145, 217 (1990).MathSciNetCrossRefGoogle Scholar
  54. [54]
    Z. Agur, J. Theor. Biol. 112, 677 (1985).MathSciNetCrossRefGoogle Scholar
  55. [55]
    Z. Agur and J.L. Deneubourg, Theor. Popul. Biol. 27, 75 (1985).CrossRefzbMATHGoogle Scholar
  56. [56]
    Z. Agur, R. Arnon, B. Sandak, and B. Schechter, Exp. Hematol. 19, 364 (1991).Google Scholar

Copyright information

© Springer-Verlag New York, Inc. 1996

Authors and Affiliations

  • Ramit Mehr
  • Zvia Agur

There are no affiliations available

Personalised recommendations