Advertisement

Brownian Combustion Engines

  • Marcelo O. Magnasco
Part of the Institute for Nonlinear Science book series (INLS)

Abstract

Protein motors operate in a Brownian regime where inertia is negligible and thermal fluctuations are important. We show that, in this regime, symmetry breaking and time correlations suffice to generate motion and forces. We also show that a chemical cycle that gains energy while going around generates time correlations. Thus, we present a natural description of a system where the energy stored in chemical compounds can be transduced into motion.

Keywords

Persistence Length Stationary Probability Distribution Molecular Cell Biology Carnot Cycle Interevent Time 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    J. Darnell, H. Lodish, and D. Baltimore, Molecular Cell Biology (Scientific American Books, New York, 1990).Google Scholar
  2. [2]
    B. Alberts, D. Bray, J. Lewis, M. Raff, K. Roberts, and J.D. Watson, The Molecular Biology of the Cell, 2nd ed., (Garland, New York, 1989).Google Scholar
  3. [3]
    F. Gittes, B. Mickey, J. Nettleton, and J. Howard, J. Cell Biol. 120, 923 (1993).CrossRefGoogle Scholar
  4. [4]
    A. Ott, M. Magnasco, A. Simon, and A. Libchaber, Phys. Rev. E 48 (3), R1642 (1993).ADSCrossRefGoogle Scholar
  5. [5]
    M. Magnasco, Phys. Rev. Lett. 71 (10), 1477 (1993).ADSCrossRefGoogle Scholar
  6. [6]
    J. Maddox, Nature 365, 203 (1993)ADSCrossRefGoogle Scholar
  7. [7]
    R.P. Feynman, R.B. Leighton, and M. Sands, The Feynman Lectures on Physics (Addison-Wesley, Reading, MA, 1966).Google Scholar
  8. [8]
    H. Risken, The Fokker-Planck Equation: Methods of Solution and Applications (Springer-Verlag, Berlin, 1989).zbMATHCrossRefGoogle Scholar
  9. [9]
    J. Zinn-Justin, Quantum Field Theory and Critical Phenomena (Clarendon Press, Oxford, 1989).Google Scholar
  10. [10]
    P. Hänggi, P. Talkner, and M. Borkovec, Rev. Mod. Phys. 62 (2), 251 (1990).ADSCrossRefGoogle Scholar
  11. [11]
    W. Horsthemke and R. Lefever, Noise Induced Transitions: Theory and Applications in Physics, Chemistry and Biology (Springer-Verlag, Berlin, 1984).zbMATHGoogle Scholar
  12. [12]
    P.S. Hagan, C.R. Doering, and C.D. Levermore, J. Stat. Phys. 54 (5/6), 1321 (1989).MathSciNetADSzbMATHCrossRefGoogle Scholar
  13. [13]
    W. Houston, Principles of Mathematical Physics (McGraw-Hill, New York, 1934).Google Scholar
  14. [14]
    H.A. Kramers, Physica 7, 284 (1940).MathSciNetADSzbMATHCrossRefGoogle Scholar
  15. [15]
    S. Leibler and D. Huse, J. Cell Biol. 121 (6), 1356 (1993).CrossRefGoogle Scholar
  16. [16]
    R. Vale and F. Oosawa, Adv. Biophys. 26, 97 (1990).CrossRefGoogle Scholar
  17. [17]
    C.S. Peskin, G.M. Odell, and G.F. Oster, Biophys. J. 65, 316 (1993).ADSCrossRefGoogle Scholar
  18. [18]
    N.J. Cordova, B. Ermentrout, and G.F. Oster, Proc. Natl. Acad. Sci. 89, 339 (1992).ADSCrossRefGoogle Scholar
  19. [19]
    S.M. Simon, CS. Peskin, and G.F. Oster, Proc. Natl. Acad. Sci. 89, 3770 (1992).ADSCrossRefGoogle Scholar
  20. [20]
    R. Fox, Biological Energy Transduction: The Uroboros (Wiley-Interscience, New York, 1982).Google Scholar
  21. [21]
    A. Adjari and J. Prost, Mouvement Induit par un Potentiel Périodique de Basse Symetrie preprint (ESPCI, Paris, 1993).Google Scholar
  22. [22]
    M. Buttiker, Z. Phys. B 68, 161 (1987).ADSCrossRefGoogle Scholar
  23. [23]
    N. van Kampen, Z. Phys. B 68, 125 (1987).ADSCrossRefGoogle Scholar
  24. [24]
    N. van Kampen, IBM J Res. Develop. 32, 107 (1988).CrossRefGoogle Scholar

Copyright information

© Springer-Verlag New York, Inc. 1996

Authors and Affiliations

  • Marcelo O. Magnasco

There are no affiliations available

Personalised recommendations