Toward a Theory of Growing Surfaces: Mapping Two-Dimensional Laplacian Growth Onto Hamiltonian Dynamics and Statistics

  • Raphael Blumenfeld
Part of the Institute for Nonlinear Science book series (INLS)


I show that the evolution of a two-dimensional surface in a Laplacian field can be described by Hamiltonian dynamics. First, the growing region is mapped conformally to the interior of the unit circle, creating in the process a set of mathematical zeros and poles that evolve dynamically as the surface grows. Then the dynamics of these quasi-particles are analyzed. A class of arbitrary initial conditions is discussed explicitly, where the surface-tension-free Laplacian growth process is integrable. This formulation holds only as long as the singularities of the map are confined to within the unit circle. But the Hamiltonian structure further allows for surface tension to be introduced as an energetic term that effects repulsion between the quasi-particles and the surface. These results are used to formulate a first-principles statistical theory of pattern formation in stochastic growth, where noise is a key player.


Gibbs Measure Cusp Formation Hamiltonian Structure Physical Surface Hamiltonian Dynamic 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    P. Pelce, Dynamics of Curved Fronts (Academic Press, San Diego, CA, 1988)zbMATHGoogle Scholar
  2. [1a]
    D. A. Kessler, J. Koplik, and H. Levine, Adv. Phys. 37, 255 (1988)ADSCrossRefGoogle Scholar
  3. [1b]
    P. Meakin, in Phase Transitions and Critical Phenomena, vol. 12, (Academic Press, New York, 1988)Google Scholar
  4. [1c]
    Edited by C. Domb and J.L. Lebowitz, T. Vicsek, Fractal Growth Phenomena (World Scientific, Singapore, 1989).Google Scholar
  5. [2]
    L. Piteronero, A. Erzan, and C. Evertsz, Phys. Rev. Lett. 61, 861 (1988)ADSCrossRefGoogle Scholar
  6. [2a]
    L. Piteronero, A. Erzan and C. Evertsz.Physica A 151, 207 (1988)MathSciNetADSCrossRefGoogle Scholar
  7. [2b]
    T.C. Halsey and M. Leibig, Phys. Rev. A 46, 7793 (1992).ADSCrossRefGoogle Scholar
  8. [3]
    B. Shraiman and D. Bensimon, Phys. Rev. A 30, 2840 (1984).MathSciNetADSCrossRefGoogle Scholar
  9. [4]
    L. Paterson, J. Fluid Mech. 113, 513 (1981)ADSCrossRefGoogle Scholar
  10. [4a]
    L. Paterson, Phys. Fluids 28, 26 (1985)MathSciNetADSCrossRefGoogle Scholar
  11. [4b]
    S.D. Howison, J. Fluid Mech. 167, 439 (1986)MathSciNetADSzbMATHCrossRefGoogle Scholar
  12. [4c]
    D. Bensimon and P. Pelce, Phys. Rev. A 33, 4477 (1986)ADSCrossRefGoogle Scholar
  13. [4d]
    S. Sarkar and M. Jensen, Phys. Rev. A 35, 1877 (1987)ADSCrossRefGoogle Scholar
  14. [4e]
    B. Derrida and V. Hakim, Phys. Rev. A 45, 8759 (1992).ADSCrossRefGoogle Scholar
  15. [5]
    D. Bensimon, L.P. Kadanoff, S. Liang, B.I. Shraiman, and C. Tang, Rev. Mod. Phys. 58, 977 (1986)ADSCrossRefGoogle Scholar
  16. [5a]
    W.S. Dai, L.P. Kadanoff, and S. Zhou, Phys. Rev. A 43, 6672 (1991).ADSCrossRefGoogle Scholar
  17. [6]
    R. Blumenfeld and R. C. Ball, Phys. Rev. E 51, 3434 (1995).ADSCrossRefGoogle Scholar
  18. [7]
    S. Richardson, J. Fluid Mech. 56, 609 (1972)ADSzbMATHCrossRefGoogle Scholar
  19. [7a]
    M.B. Mineev, Physica D 43, 288 (1990).MathSciNetADSzbMATHCrossRefGoogle Scholar
  20. [8]
    R. Blumenfeld, Phys. Rev. E 50, 2952 (1994)MathSciNetADSzbMATHCrossRefGoogle Scholar
  21. [8a]
    R. Blumenfeld, Phys. Lett. A 186, 317 (1994).ADSCrossRefGoogle Scholar
  22. [9]
    S.D. Howison, SIAM J. Appl. Math. 46, 20 (1986)MathSciNetzbMATHCrossRefGoogle Scholar
  23. [9a]
    D. Bensimon and P. Pelce, Phys. Rev. A 33, 4477 (1986)ADSCrossRefGoogle Scholar
  24. [9b]
    M. Mineev-Weinstein and S.P. Dawson, preprint (1993).Google Scholar
  25. [10]
    R. Blumenfeld, unpublished, 1993.Google Scholar
  26. [11]
    B.B. Mandelbrot, J. Fluid Mech. 62, 331 (1974)ADSzbMATHCrossRefGoogle Scholar
  27. [11a]
    B.B. Mandelbrot, Ann. Israel Phys. Soc. 2, 225 (1978)MathSciNetADSGoogle Scholar
  28. [11b]
    T.C. Halsey, M.H. Jensen, L.P. Kadanoff, I. Procaccia, and B.I. Shraiman, Phys. Rev. A 33, 1141 (1986)MathSciNetADSzbMATHCrossRefGoogle Scholar
  29. [11c]
    T.C. Halsey, P. Meakin, and I. Procaccia, Phys. Rev. Lett. 56, 854 (1986)ADSCrossRefGoogle Scholar
  30. [11d]
    C. Amitrano, A. Coniglio, and F. diLiberto, Phys. Rev. Lett. 57, 1016 (1986)ADSCrossRefGoogle Scholar
  31. [11e]
    P. Meakin, in Phase Transitions and Critical Phenomena, vol. 12, edited by C. Domb and J.L. Lebowitz (Academic Press, New York, 1988), p. 335Google Scholar
  32. [11f]
    R. Blumenfeld and A. Aharony, Phys. Rev. Lett. 62, 2977 (1989).ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag New York, Inc. 1996

Authors and Affiliations

  • Raphael Blumenfeld

There are no affiliations available

Personalised recommendations