Skip to main content

Scale Invariance in Epitaxial Growth

  • Chapter
Fluctuations and Order

Part of the book series: Institute for Nonlinear Science ((INLS))

  • 197 Accesses

Abstract

We examine three manifestations of scale invariance during epitaxial growth from the standpoint of a single atomistic model. The first two manifestations are in the submonolayer regime of growth, where clusters are formed but have not yet begun to coalesce. Depending on the material deposited and the substrate, the clusters can exhibit either an effective fractal dimension or a Euclidean dimension. The cluster size distribution function in this regime also exhibits scaling as a function of time. Interestingly, this distribution function and its scaling properties can be accurately described in terms of rate equations that omit entirely the influence of any fluctuations. An altogether different picture emerges in the regime of long deposition times. To analyze the scaling properties of the growing surface in this limit, we use exact discrete Langevin equations that are obtained directly from the rules of our simulation model. A regularization procedure is then used to convert these discrete equations into (infinite-order) continuum partial differential equations. The truncation of these continuum equations is achieved by performing a renormalization-group analysis, which leads asymptotically to a fourth-order nonlinear stochastic differential equation that is identical to that proposed independently by Wolf and Villain and by Lai and Das Sarma. Large-scale Monte Carlo simulations in d = 1, 2, and 3 substrate dimensions show that for all spatial dimensions the observed exponents correspond to those obtained from our continuum equations. This shows that vapor deposition is an example of a driven, nonequilibrium process that evolves to a nontrivial scale-invariant structure under the influence of input noise.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. A.Y. Cho, Thin Solid Films 100, 291 (1983).

    Article  ADS  Google Scholar 

  2. B.A. Joyce, Rep. Prog. Phys. 48, 1595 (1985).

    Article  Google Scholar 

  3. J.D. Weeks and G.H. Gilmer, Adv. Chem. Phys. 40, 157 (1979).

    Article  Google Scholar 

  4. A. Madhukar and S.V. Ghaisas, Crit. Rev. Solid State Mater. Sci. 13, 1434 (1987).

    Google Scholar 

  5. T. Shitara, D.D. Vvedensky, M.R. Wilby, J. Zhang, J.H. Neave, and B.A. Joyce, Phys. Rev. B 46, 6815–6825 (1992).

    Article  ADS  Google Scholar 

  6. C. GodrĂšche, ed., Solids Far From Equilibrium (Cambridge University Press, Cambridge, 1991).

    Google Scholar 

  7. F. Family and T. Vicsek, Dynamics of Fractal Surfaces (World Scientific, Singapore, 1991).

    MATH  Google Scholar 

  8. E. Kopatzki, S. GĂŒnther, W. Nichtl-Pecher, and R.J. Behm, Surf. Sci. 284, 154 (1993).

    Article  ADS  Google Scholar 

  9. R.Q. Hwang, J. Schroder, C. Gunther, and R.J. Behm, Phys. Rev. Lett. 67, 3279 (1991).

    Article  ADS  Google Scholar 

  10. T.A. Witten and L.M. Sander, Phys. Rev. B 27, 5686 (1983).

    Article  MathSciNet  ADS  Google Scholar 

  11. A. Zangwill, Physics at Surfaces (Cambridge University Press, Cambridge, 1988).

    Google Scholar 

  12. V. Bortolani, N.H. March, and M.R Tosi, Interaction of Atoms and Molecules With Solid Surfaces (Plenum, New York, 1990).

    Google Scholar 

  13. V.P. Zhdanov, Elementary Physicochemical Processes on Solid Surfaces (Plenum, New York, 1991).

    Google Scholar 

  14. Z. Zhang, Y.-T. Lu, and H. Metiu, Surf. Sci. 255, L543 (1991).

    Google Scholar 

  15. C.-L. Liu and J.B. Adams, Surf. Sci. 265, 262 (1992).

    Article  ADS  Google Scholar 

  16. Z. Zhang and H. Metiu, J. Chem. Phys. 93, 2087 (1990).

    Article  ADS  Google Scholar 

  17. T. Ala-Nissila and S.C. Ying, Phys. Rev. B 42, 10264 (1990).

    Article  ADS  Google Scholar 

  18. H.C. Kang and W.H. Weinberg, J. Chem. Phys. 90, 2824 (1989).

    Article  ADS  Google Scholar 

  19. K. Binder, in Monte Carlo Methods in Statistical Physics, edited by K. Binder (Springer-Verlag, Berlin, 1979), pp. 1–45.

    Google Scholar 

  20. S. Clarke and D.D. Vvedensky, Phys. Rev. Lett. 58, 2235 (1987).

    Article  ADS  Google Scholar 

  21. H. Yan, Phys. Rev. Lett. 68, 3048 (1992).

    Article  ADS  Google Scholar 

  22. D.A. Kessler, H. Levine, and L.M. Sander, Phys. Rev. Lett. 69, 100 (1992).

    Article  ADS  Google Scholar 

  23. P. Ć milauer and D.D. Vvedensky, Phys. Rev. B 48, 17603 (1993).

    Article  ADS  Google Scholar 

  24. J.H. Neave, RJ. Dobson, B.A. Joyce, and J. Zhang, Appl. Phys. Lett. 47, 100 (1985).

    Article  ADS  Google Scholar 

  25. J. Sudijono, M.D. Johnson, C.W. Snyder, M.B. Elowitz, and B.G. Orr, Phys. Rev. Lett. 69, 2811 (1992).

    Article  ADS  Google Scholar 

  26. G. Zinmeister, Thin Solid Films 2, 497 (1968); 4, 363 (1969); 7, 51 (1971).

    Article  ADS  Google Scholar 

  27. B. Lewis and D.S. Campbell, J. Vac. Sci. Technol. 4, 209 (1967).

    Article  ADS  Google Scholar 

  28. J.A. Blackman and A. Wilding, Europhys. Lett. 16, 115 (1991).

    Article  ADS  Google Scholar 

  29. R.L. Drake, in Topics in Current Aerosol Research, vol. 3, part 2, edited by G.M. Hidy and J.R. Brock (Pergamon, Oxford, 1972), pp. 201–376.

    Google Scholar 

  30. T. Vicsek and F. Family, Phys. Rev. Lett. 52, 1669 (1984).

    Article  ADS  Google Scholar 

  31. H.E. Stanley, Introduction to Phase Transitions and Critical Phenomena (Oxford University Press, New York, 1971).

    Google Scholar 

  32. C. Ratsch, A. Zangwill, P. Ć milauer, and D.D. Vvedensky, Phys. Rev. Lett. 72, 3194 (1994).

    Article  ADS  Google Scholar 

  33. P. Meakin, T. Viscek, and F. Family, Phys. Rev. B 31, 564 (1985).

    Article  ADS  Google Scholar 

  34. F. Family, Physica A 168, 561 (1990).

    Article  ADS  Google Scholar 

  35. E. Medina, T. Hwa, M. Kardar, and Y.-C. Zhang, Phys. Rev. A 39, 3053 (1989).

    Article  MathSciNet  ADS  Google Scholar 

  36. J. Villain, J. Phys. I 1, 19 (1991).

    Article  Google Scholar 

  37. A. Zangwill, C.N. Luse, D.D. Vvedensky, and M.R. Wilby, in Interface Dynamics and Growth, edited by K.S. Liang, M.P. Anderson, R.F. Bruinsma, and G. Scoles (Materials Research Society, Pittsburgh, 1992), pp. 189–198

    Google Scholar 

  38. A. Zangwill, C.N. Luse, D.D. Vvedensky, and M.R. Wilby, Surf. Sci. 274, L529 (1992).

    Article  Google Scholar 

  39. D.D. Vvedensky, A. Zangwill, C.N. Luse, and M.R. Wilby, Phys. Rev. E 48, 852 (1993).

    Article  ADS  Google Scholar 

  40. N.G. Van Kampen, Stochastic Processes in Physics and Chemistry (North-Holland, Amsterdam, 1981).

    MATH  Google Scholar 

  41. R.F. Fox and J. Keizer, Phys. Rev. A 43, 1709 (1991).

    Article  MathSciNet  ADS  Google Scholar 

  42. T.G. Kurz, Math. Prog. Stud. 5, 67 (1976)

    Google Scholar 

  43. T.G. Kurz, Stoch. Proc. Appl. 6, 223 (1978).

    Article  Google Scholar 

  44. P. NoziĂšres and F. Gallet, J. Phys. (Paris) 45, 353 (1987).

    Google Scholar 

  45. A. DĂŹaz-Guilera, Phys. Rev. A 45, 8551 (1992).

    Article  ADS  Google Scholar 

  46. D. Wolf and J. Villain, Europhys. Lett. 13, 389 (1990).

    Article  ADS  Google Scholar 

  47. Z.-W. Lai and S. Das Sarma, Phys. Rev. Lett. 66, 2348 (1991).

    Article  ADS  Google Scholar 

  48. C.N. Luse and A. Zangwill, Phys. Rev. B 48, 1970 (1993).

    Article  ADS  Google Scholar 

  49. M.R. Wilby, D.D. Vvedensky, and A. Zangwill, Phys. Rev. B 46, 12896 (1992); (errata) Phys. Rev. B 47, 16068 (1993).

    Article  ADS  Google Scholar 

  50. P.A. Maksym, Semicon. Sci. Technol. 3, 594 (1988).

    Article  ADS  Google Scholar 

  51. D.D. Vvedensky and S. Clarke, Surf. Sci. 225, 373 (1990).

    Article  ADS  Google Scholar 

  52. S. Das Sarma, J. Vac. Sci. Technol. B 10, 1695 (1992).

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Springer-Verlag New York, Inc.

About this chapter

Cite this chapter

Vvedensky, D.D., Zangwill, A., Luse, C.N., Ratsch, C., Ć milauer, P., Wilby, M.R. (1996). Scale Invariance in Epitaxial Growth. In: Millonas, M. (eds) Fluctuations and Order. Institute for Nonlinear Science. Springer, New York, NY. https://doi.org/10.1007/978-1-4612-3992-5_13

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-3992-5_13

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4612-8463-5

  • Online ISBN: 978-1-4612-3992-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics