Skip to main content

Using Path-Integral Methods to Calculate Noise-Induced Escape Rates in Bistable Systems: The Case of Quasi-Monochromatic Noise

  • Chapter
Fluctuations and Order

Part of the book series: Institute for Nonlinear Science ((INLS))

Abstract

We review the basic steps leading from the definition of a stochastic process as a set of Langevin equations to the calculation of escape rates from path-integral representations for probability distribution functions. While the construction of the path-integral itself and the use of the method of steepest descents in the weak-noise limit can be formally carried out for a system described by rather general Langevin equations with complicated colored noise, the analysis of the resulting extremal equations is not, in general, so straightforward. However, we show that, even when the noise is colored, these may be put into a Hamiltonian form, which leads to improved numerical treatments and better insights. We concentrate on discussing the solution of Hamilton’s equations over an infinite time interval, in order to determine the leading order contribution to the mean escape time for a bistable potential. The paths may be oscillatory and inherently unstable, in which case one must use a multiple shooting numerical technique over a truncated time period in order to calculate the infinite time optimal paths to a given accuracy. All of this is illustrated on the simple example consisting of an overdamped particle in a bistable potential acted upon by quasi-monochromatic noise. We first show how an approximate solution of the extremal equations leads to the conclusion that the bandwidth parameter has a certain critical value above which particle escape is by white-noise-like outbursts, but below which escape is by oscillatory type behavior. We then discuss how a numerical investigation of Hamilton’s equations for this system verifies this result and also indicates how this change in the nature of the optimal path may be understood in terms of singularities in the configuration space of the corresponding dynamical system.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. M.I. Dykman, P.V.E. McClintock, V.N. Smelyanskiy, N.D. Stein, and N.G. Stocks, Phys. Rev. Lett. 68, 2718 (1992).

    Article  ADS  Google Scholar 

  2. See, for example, J. Zinn-Justin, Quantum Field Theory and Critical Phenomena (Clarendon Press, Oxford, 1993), Sec. 3.5.

    Google Scholar 

  3. A.J. McKane, Phys. Rev. A 40, 4050 (1989).

    Article  ADS  Google Scholar 

  4. N.G. van Kampen, J. Stat. Phys. 24, 175 (1981).

    Article  ADS  MATH  Google Scholar 

  5. A.J. McKane, H.C. Luckock, and A.J. Bray, Phys. Rev. A 41, 644 (1990).

    Article  MathSciNet  ADS  Google Scholar 

  6. See, for example, H.C. Luckock and A.J. McKane, Phys. Rev. A 42, 1982 (1990).

    Article  MathSciNet  ADS  Google Scholar 

  7. L.E. Reichl and P. Alpatov, Chapter 5, this volume.

    Google Scholar 

  8. R.S. Maier and D.L. Stein, Chapter 8, this volume.

    Google Scholar 

  9. M.I. Dykman, M.M. Millonas, and V.N. Smelyanskiy, Chapter 9, this volume.

    Google Scholar 

  10. M.I. Dykman, Phys. Rev. A 42, 2020 (1990).

    Article  MathSciNet  ADS  Google Scholar 

  11. L. Schimansky-Geier and Ch. ZĂĽlicke, Z. Phys. B 79, 451 (1990).

    Article  ADS  Google Scholar 

  12. S.J.B. Einchcomb and A.J. McKane, Phys. Rev. E 49, 257 (1994).

    Article  ADS  Google Scholar 

  13. R.S. Maier and D.L. Stein, Phys. Rev. Lett. 69, 3691 (1992).

    Article  ADS  Google Scholar 

  14. V.A. Chinarov, M.I. Dykman, and V.N. Smelyanskiy, Phys. Rev. E 47, 2448 (1993).

    Article  ADS  Google Scholar 

  15. R.S. Maier and D.L. Stein, Phys. Rev. Lett. 71, 1783 (1993).

    Article  ADS  Google Scholar 

  16. R.S. Maier and D.L. Stein, Phys. Rev. E 48, 931 (1993).

    Article  ADS  Google Scholar 

  17. M.I. Dykman, M.M. Millonas, and V.N. Smelyanskiy, Phys. Lett. A 195, 53 (1994).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  18. L.S. Schulman, Techniques and Applications of Path Integration (Wiley, New York, 1981).

    MATH  Google Scholar 

  19. V.I. Arnold, Mathematical Methods of Classical Mechanics, 2nd ed. (Springer-Verlag, New York, 1989).

    Google Scholar 

  20. A. J. Bray, A.J. McKane, and T.J. Newman, Phys. Rev. A 41, 657 (1990).

    Article  MathSciNet  ADS  Google Scholar 

  21. E.T. Whittaker, Analytical Dynamics, 4th ed. (Cambridge University Press, Cambridge, 1937), Sec. 110.

    MATH  Google Scholar 

  22. T.J. Newman, A.J. Bray, and A.J. McKane, J. Stat. Phys. 59, 357 (1990).

    Article  ADS  Google Scholar 

  23. U. Ascher, J. Christiansen, and R.D. Russel, ACM Trans. Math. Software 7, 209(1981).

    Article  MATH  Google Scholar 

  24. R.M.M. Mattheij and G.W.M. Staarink, Math. Comp. 42 25 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  25. R.M.M. Mattheij and G.W.M. Staarink SIAM J. Sci. Stat. Comp. 5, 745 (1984).

    Article  MathSciNet  MATH  Google Scholar 

  26. U. Ascher, R.M.M. Mattheij, and R.D. Russel, Numerical Solution of Boundary Value Problems for Ordinary Differential Equations (Prentice Hall, Englewood Cliffs, NJ, 1988).

    MATH  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Springer-Verlag New York, Inc.

About this chapter

Cite this chapter

Einchcomb, S.J.B., McKane, A.J. (1996). Using Path-Integral Methods to Calculate Noise-Induced Escape Rates in Bistable Systems: The Case of Quasi-Monochromatic Noise. In: Millonas, M. (eds) Fluctuations and Order. Institute for Nonlinear Science. Springer, New York, NY. https://doi.org/10.1007/978-1-4612-3992-5_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-3992-5_10

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4612-8463-5

  • Online ISBN: 978-1-4612-3992-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics