State-Dependent Noise and Interface Propagation

  • Rolf Landauer
Part of the Institute for Nonlinear Science book series (INLS)


After some initial remarks about studies of complexity, motion in multistable systems, in which noise depends on the state of the system, is analyzed. The blowtorch theorem is reviewed, emphasizing that relative stability, in systems with competing states of local stability, depends on the noise along the whole path connecting the competing states. Kink motion in extended one-dimensional systems is reviewed. Kink motion in systems with state-dependent noise is treated through a heuristic approximation. Adding noise to the state on one side of a kink is equivalent to a bias force favoring the other state.


Entropy Production Local Stability Free Energy Difference Interface Propagation Bias Force 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    T. Toffoli, Int. J. Theor. Phys. 21, 165 (1982).MathSciNetCrossRefGoogle Scholar
  2. [2]
    H. Kuhn, IBM J. Res. Dev. 32, 37 (1988).CrossRefGoogle Scholar
  3. [3]
    R. Landauer, Phys. World 6, 71 (April 1993).Google Scholar
  4. [4]
    R. Lewin, Complexity: Life at the Edge of Chaos (Macmillan, New York, 1992).Google Scholar
  5. [5]
    M.M. Waldrop, Complexity: The Emerging Science at the Edge of Order and Chaos (Simon & Schuster, New York, 1992).Google Scholar
  6. [6]
    R. Landauer, Phys. Today 31, 23 (November 1978).CrossRefGoogle Scholar
  7. [7]
    R. Landauer, in Bifurcation Theory and Applications in Scientific Disciplines, edited by O. Gurel and O. E. Rössler (Annals of the New York Academy of Sciences, New York, 1979), p. 433.Google Scholar
  8. [8]
    R. Landauer, Invited Opinion section, Am. J. Physiol. 241, R197 (1981).Google Scholar
  9. [9]
    R. Landauer, Physica A 194, 551 (1993).ADSCrossRefGoogle Scholar
  10. [10]
    R. Landauer, in Dynamic Patterns in Complex Systems, edited by J.A.S. Kelso, A.J. Mandell, and M.F. Shlesinger (World Scientific, Singapore, 1988), p. 388.Google Scholar
  11. [11]
    R. Landauer, Physica A 168, 75 (1990).ADSCrossRefGoogle Scholar
  12. [12]
    R. Landauer, J. Stat. Phys. 53, 233 (1988).ADSCrossRefGoogle Scholar
  13. [13]
    D.W. Bol and R. De Bruyn Ouboter, Physica B 154, 56 (1988).ADSCrossRefGoogle Scholar
  14. [14]
    D.W. Bol and R. De Bruyn Ouboter, Physica B 160, 56 (1989).ADSCrossRefGoogle Scholar
  15. [15]
    M. Büttiker, Z. Phys. B 68, 161 (1987).ADSCrossRefGoogle Scholar
  16. [16]
    N.G. van Kampen, IBM J. Res. Dev. 32, 107 (1988).CrossRefGoogle Scholar
  17. [17]
    M. Büttiker and R. Landauer, in Nonlinear Phenomena at Phase Transitions and Instabilities, edited by T. Riste (Plenum, New York, 1982), p. 111.Google Scholar
  18. [18]
    R. Landauer, Phys. Rev. A 15, 2117 (1977).ADSCrossRefGoogle Scholar
  19. [19]
    R. Landauer, in The Maximum Entropy Formalism, edited by R.D. Levine and M. Tribus (MIT, Cambridge, 1979), p. 321.Google Scholar
  20. [20]
    A. Engel, Phys. Lett. 113A, 139 (1985).ADSGoogle Scholar
  21. [21]
    L. Schimansky-Geier and Ch. Zülicke, Z. Phys. B 82, 157 (1991).ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag New York, Inc. 1996

Authors and Affiliations

  • Rolf Landauer

There are no affiliations available

Personalised recommendations