Skip to main content

Special Topics in Thermal Contact Conductance

  • Chapter
Thermal Contact Conductance

Part of the book series: Mechanical Engineering Series ((MES))

  • 285 Accesses

Abstract

The discussion, so far, has been concerned basically with the general nature of contact heat transfer. In this chapter, some specific problems in thermal contact conductance will be considered. These include special contact configurations, such as bolted or riveted joints, and cylindrical joints. The effect of the direction of heat flow and the loading history will be considered next in separate sections. This is followed by a discussion of packed beds and stacks of laminations. In these applications, the contact resistance plays a major role in controlling their effectiveness as insulators. Finally, in view of their particular significance, contact heat transfer in specific materials, such as nuclear fuel elements and other specific materials, and the contact conductance in the presence of oxide films, will be considered in some detail.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

Bolted or Riveted Joints

  • Aron, W., and Colombo, G. (1963). Controlling Factors of Thermal Conductance Across Bolted Joints in a Vacuum Environment. ASME Paper 63-HT-196. American Society of Mechanical Engineers, New York.

    Google Scholar 

  • Bradley, T.L., Lardner, T.J., and Mikic, B.B. (1971). Bolted Joint Interface Pressure for Thermal Contact Resistance. Trans ASME, J Appl Mech, 542–545.

    Google Scholar 

  • Chandrashekhara, K., and Muthanna, S.K. (1977a). Stresses in a Thick Plate With a Circular Hole Under Axisymmetric Conditions. Int J Eng Sci, 15:135–146.

    Article  MATH  Google Scholar 

  • Chandrashekhara, K., and Muthanna, S.K. (1977b). Axisymmetric Stress Distribution in a Transversely Isotropic Thick Plate With a Circular Hole. ACTA Mechanica, 28:65–76.

    Article  MATH  Google Scholar 

  • Chandrashekhara, K., and Muthanna, S.K. (1978). Pressure Distribution in Bolted Connections. In: Advances in Reliability and Stress Analysis, ASME, Winter Meeting. American Society of Mechanical Engineers, New York.

    Google Scholar 

  • Chandrashekhara, K., and Muthanna, S.K. (1979). Analysis of a Thick Plate With a Circular Hole Resting on a Smooth Rigid Bed and Subjected to Axisymmetric Normal Load. ACTA Mechanica, 33:33–44.

    Article  MATH  Google Scholar 

  • Curti, G., Raffa, F., and Strona, P. (1985). Analysis of Contact Area and Pressure Distribution in Bolted Plates by Boundary Element Method. Wire, 35:14–18.

    Google Scholar 

  • Elliott, D.H. (1965). Thermal Conduction Across Aluminum Bolted Joints. ASME Paper 65-HT-53. American Society of Mechanical Engineers, New York.

    Google Scholar 

  • Fletcher, L.S., Peterson, G.P., Madhusudana, C.V., and Groll, E. (1990). Constriction Resistance Through Bolted and Riveted Joints. Trans ASME, J Heat Trans, 112:857–863.

    Article  Google Scholar 

  • Fernlund, I. (1961). A Method to Calculate Pressure Between Bolted or Riveted Plates. Chalmers University of Technology, Gothenburg, Sweden, pp. 13–51.

    Google Scholar 

  • Gould, H.H., and Mikic, B.B. (1972). Areas of Contact and Pressure Distribution in Bolted Joints. Trans ASME, J Eng Ind, 94:864–870.

    Article  Google Scholar 

  • Greenwood, J.A. (1964). The Elastic Stresses Produced in the Mid-Plane of a Slab by Pressure Applied Symmetrically at its Surface. Proc Cambridge Phil Soc, 60:159–169.

    Article  MathSciNet  MATH  Google Scholar 

  • Ito, Y., Toyoda, J., and Negata, S. (1979). Interface Pressure Distribution in a Bolt-Flange Assembly. Trans ASME, J Mech Des, 101:330–337.

    Article  Google Scholar 

  • Kumano, H., Sawa, T., and Hirose, T. (1994). Mechanical Behaviour of Bolted Joints Under Steady Heat Conduction. Trans ASME, J Press Vess Technol, 116:42–48.

    Article  Google Scholar 

  • Lardner, T.J. (1965). Stresses in a Thick Plate With Axially Symmetric Loading. Trans ASME, J Appl Mech, 87:458–459.

    Google Scholar 

  • Lee, S., Song, S., Moran, K.P., and Yovanovich, M.M. (1993). Analytical Modelling of Thermal Resistance in Bolted Joints. ASME, HTD, Enhanced Cooling Techniques for Electronic Applications, 263:115–122.

    Google Scholar 

  • Madhusudana, C.V. (1994). Conduction of Heat Through Bolted Joints. In: Thermal Conductivity 22, Technomic Publishing, Lancaster, PA, pp. 701–711.

    Google Scholar 

  • Madhusudana, C.V., Peterson, G.P., and Fletcher, L.S. (1990). Effect of Non-Uniform Pressures on the Thermal Conductance in Bolted and Riveted Joints. Trans ASME, J Energy Res Technol, 112:174–182.

    Article  Google Scholar 

  • Minakuchi, Y. (1984). Contact Stresses Between Two Thick Plates With a Circular Hole and a Sandwiched Solid Metal Gasket. Bulletin JSME, 27:17–23.

    Google Scholar 

  • Minakuchi, Y., Koizima, T., Shibuya, T., and Yoshemine, K. (1983). Contact Stresses in Two Elastic Bodies (Elastic Bodies are Finite Hollow Cylinders). Bulletin JSME, 26:716–723.

    Google Scholar 

  • Mittlebach, M., Vogd, C., Fletcher, L.S., and Peterson, G.P. (1992). The Interfacial Pressure Distribution and Thermal Conductance of Bolted Joints. ASME, HTD, Heat Transfer in Hazardous Waste Processing, 212:9–17.

    Google Scholar 

  • Motosh, N. (1976). Determination of Joint Stiffness in Bolted Connections. Trans ASME, J Eng Ind, 91:858–861.

    Article  Google Scholar 

  • Oehler, S.A., McMordie, R.K., and Allerton, A.B. (1979). Thermal Contact Conductance Across a Bolted Joint in a Vacuum. AIAA Paper 79–1068. American Institute of Aeronautics and Astronautics, New York.

    Google Scholar 

  • Roca, R.T., and Mikic, B.B. (1972). Thermal Conductance in a Bolted Joint. Prog Astro Aero, 31:193–207.

    Google Scholar 

  • Rötscher, F. (1927). Die Maschinenelemente. Verlag Julius Springer, Berlin, pp. 230–236.

    Google Scholar 

  • Sneddon, I.N. (1946). The Elastic Stresses Produced in a Thick Plate by the Application of Pressure to Its Free Surfaces. Proc Cambridge Phil Soc, 42:260–271.

    Article  MathSciNet  MATH  Google Scholar 

  • Veilleux, E., and Mark, M. (1969). Thermal Resistance of Bolted or Screwed Sheet Metal Joints in a Vacuum. J Spacecraft, 6(3):339–342.

    Article  Google Scholar 

  • Whitehurst, CA., and Durbin, W.T. (1970). A Study of Thermal Conductance of Bolted Joints. Report No. NASA-CR-102639, Louisiana State University, Baton Rouge.

    Google Scholar 

  • Yip, F.C. (1972). Theory of Thermal Contact Resistance in Vacuum With an Application to Bolted Joints. Prog Astro Aero, 31:177–192.

    Google Scholar 

Cylindrical Joints

  • Dart, D.M. (1959). Effect of Fin Bond on Heat Transfer. ASHRAE J, 1:67–71.

    Google Scholar 

  • Egorov, E.D., Nekrasov, M.I., Pikus, V.Yu., and Daschyan, A.A. (1989). Investigation of Contact Heat Transfer Resistance in Two-Layer Finned Tubes. Soviet Energy Technol, 6(6):33–37.

    Google Scholar 

  • Gardner, K.A., and Carnavos, T.C. (1960). Thermal Contact Resistance in Finned Tubing. Trans ASME, J Heat Transfer, 82:279–293.

    Google Scholar 

  • Hsu, T.R., and Tarn, W.K. (1979). On Thermal Contact Resistance of Compound Cylinders. AIAA 14th Thermophysics Conf, Paper 79–1069. American Institute of Aeronautics and Astronautics, New York.

    Google Scholar 

  • Kulkarni, M.V., and Young, E.H. (1966). Bimetallic Finned Tubes. Chem Eng Prog, 62(7):68–71.

    Google Scholar 

  • Lemczyk, T.F. and Yovanovich, M.M. (1987). New Models and Methodology for Predicting Thermal Contact Resistance in Compound Cylinders and Finned Tubes. Heat Transfer Eng, 8(2):35–48.

    Article  ADS  Google Scholar 

  • Madhusudana, C.V. (1983). Contact Heat Transfer Between Coaxial Cylinders of Similar or Dissimilar Materials. ASME-JSME Thermal Eng Joint Conf, 3:317–322.

    Google Scholar 

  • Madhusudana, C.V. (1986). On Heat Flow Across Cylindrical Joints. 8th Int Heat Transfer Conf, 2:651–657.

    Google Scholar 

  • Madhusudana, C.V., Fletcher, L., and Peterson, G.P. (1990). Thermal Conductance of Cylindrical Joints—A Critical Review. J Thermophys Heat Transfer, 4:204–211.

    Article  ADS  Google Scholar 

  • Popov, V.M., and Krasnoborod’ko, A.I. (1975). Thermal Contact Resistance in a Gaseous Medium. Inzhenerno-Fizicheski Zhurnal, 28(5):875–883.

    Google Scholar 

  • Sheffield, J.W., Stafford, B.D., and Sauer, Jr., H.J. (1984). Finned Tube Contact Conductance: Investigation of Contacting Surfaces. ASHRAE Trans, 90:442–452.

    Google Scholar 

  • Sheffield, J.W., Abu-Ebid, M., and Sauer, Jr., H.J. (1985). Finned Tube Contact Conductance: Empirical Correlation of Thermal Conductance. ASHRAE Trans, 91 (2a): 100–117.

    Google Scholar 

  • Sheffield, J.W., Sauer, Jr., H.J., and Wood, R.A. (1987). An Experimental Method for Measuring the Thermal Contact Resistance of Plate Finnned Tube Heat Exchangers. ASHRAE Trans, 93(2):776–785.

    Google Scholar 

  • Sheffield, J.W., Wood, R.A., and Sauer, Jr., H.J. (1989). Experimental Investigation of Thermal Conductance of Finned Tube Contacts. Exp Therm Fluid Sci, 2:107–121.

    Article  ADS  Google Scholar 

  • Taborek, J. (1987). Bond Resistance and Design Temperatures for High-Finned Tubes—A Reappraisal. Heat Trans Eng, 8(2):26–34.

    Article  ADS  Google Scholar 

  • Timoshenko, S.P., and Goodier, J.N. (1970). Theory of Elasticity, 3d ed. McGraw-Hill, New York, pp. 443–452.

    MATH  Google Scholar 

  • Tsukizoe, T., and Hisakado, T. (1965). On the Mechanism of Contact Between Metal Surfaces—The Penetrating Depth and the Average Clearance. Trans ASME, J Basic Eng, 87:666–674.

    Google Scholar 

  • Ugural, A.C., and Fenster, S.K. (1975). Advanced Strength and Applied Elasticity. American Elsevier, New York, pp. 255–256.

    Google Scholar 

Rectification

  • Williams, A., and Madhusudana, C.V. (1970). Heat Flow Across Cylindrical Metallic Joints. 4th Int Heat Transfer Conf, Paper Cu 3.6. Elsevier, Amsterdam, The Netherlands.

    Google Scholar 

  • Barber, J.R. (1968). Comments on “Heat Transfer at the Interface of Dissimilar Metals—The Influence of Thermal Strain” by Clausing. Int J Heat Mass Transfer, 11:617–618.

    Article  Google Scholar 

  • Barzelay, M.E., Tong, K.N., and Hollo, C. (1954). Thermal Conductance of Contacts in Aircraft Joints, US Nat Adv Comm for Aeronautics, TN 3167. National Advisory Committee for Aeronautics, Washington, DC.

    Google Scholar 

  • Clausing, A.M. (1966). Heat Transfer at the Interface of Dissimilar Metals—The Influence of Thermal Strain, Int J Heat Mass Transfer, 9:1371–1383.

    Article  Google Scholar 

  • Dundurs, J., and Panek, C. (1976). Heat Conduction Between Bodies With Wavy Surfaces. Int J Heat Mass Transfer, 19:731–736.

    Article  Google Scholar 

  • Jeevanashankara, Madhusudana, C.V., and Kulkarni, M.B. (1990). Thermal Contact Conductance of Metallic Contacts at Low Loads. Appl Energy, 35:151–164.

    Article  Google Scholar 

  • Jones, A.M., O’Callaghan, P.W., and Probert, S.D. (1974). Effect of Interfacial Distortions on the Thermal Contact Resistance of Coaxial Cylinders. AIAA Paper 74–689, AIAA/ASME Thermophys Heat Transfer Conf, Boston. American Institute of Aeronautics and Astronautics, New York.

    Google Scholar 

  • Jones, A.M., O’Callaghan, P.W., and Probert, S.D. (1975). Thermal Rectification Due to Distortion Induced by Heat Fluxes Across Contact Between Smooth Surfaces. J Mech Eng Sci, 17(5):252–261.

    Article  Google Scholar 

  • Lewis, D.V., and Perkins, H.C. (1968). Heat Transfer at the Interface of Stainless Steel and Aluminum—The Influence of Surface Conditions on the Directional Effect. Int J Heat Mass Transfer, 11:1371–1383.

    Article  Google Scholar 

  • Madhusudana, C.V. (1993). Thermal Contact Conductance and Rectification at Low Joint Pressures. Int Comm Heat Mass Transfer, 20:123–132.

    Article  Google Scholar 

  • Powell, R.W., Tye, R.P., and Jolliffe, B.W. (1962). Heat Transfer at the Interface of Dissimilar Materials: Evidence of Thermal Comparator Experiments. Int J Heat Mass Transfer, 5:897–902.

    Article  Google Scholar 

  • Rogers, G.F.C. (1961). Heat Transfer at the Interface of Dissimilar Metals. Int J Heat Mass Transfer, 2:150–154.

    Article  Google Scholar 

  • Somers, II.R.R., Fletcher, L.S., and Flack, R.D. (1987). Explanation of Thermal Rectification. AIAA J, 25(4):620–621.

    Article  ADS  Google Scholar 

  • Stevenson, P.F., Peterson, G.P., and Fletcher, L.S. (1989). Thermal Rectification in Similar and Dissimilar Metal Contacts. ASME, Collected Papers in Heat Transfer, Htd, 123:126–132.

    Google Scholar 

  • Thomas, T.R., and Probert, S.D. (1970). Thermal Contact Resistance: The Directional Effect and Other Problems. Int J Heat Mass Transfer, 13:789–807.

    Article  Google Scholar 

  • Timoshenko, S.P., and Goodier, J.N. (1970). Theory of Elasticity, 3d ed., McGraw-Hill, New York, pp. 409–413.

    MATH  Google Scholar 

  • Veziroglu, T.N., and Chandra, S. (1970). Directional Effect in Thermal Contact Resistance. Heat Transfer, 1970, Vol. 1, Paper Cu 3–5. Elsevier, Amsterdam, The Netherlands.

    Google Scholar 

  • Williams, A. (1976). Directional Effects of Heat Flow Across Metallic Contacts. Inst Eng (Australia), Mech Eng Trans, Institution of Engineers (Australia), Canberra, pp. 1–5.

    Google Scholar 

Hysteresis

  • Borzdyka, A.M. (1965). Elevated Temperature Testing of Metals. Israel Program for Scientific Translations, Jerusalem.

    Google Scholar 

  • Fenech, H., and Rohsenow, W.M. (1963). Prediction of Thermal Conductance of Metallic Surfaces in Contact. Trans ASME, J Heat Transfer, 85:15–24.

    Google Scholar 

  • Howells, R.I.L., Probert, S.D., and Jenkins J.H. (1969). Deformations of Stacks of Thin Layers Under Normal Compressive Loads. J Strain Anal, 4(2):115–120.

    Article  Google Scholar 

  • Madhusudana, C.V., and Williams, A. (1973). Heat Flow Through Metallic Contacts—The Influence of Cycling the Contact Pressure. 1st Australian Conf on Heat Mass Transfer, Sec 4.1, Monash University, Melbourne, Australia, pp. 33–40.

    Google Scholar 

  • McWaid, T., and Marschall, E. (1992). Thermal Contact Resistance Across Pressed Metal Contacts in a Vacuum Environment. Int J Heat Mass Transfer, 35(11):2911–2920.

    Article  Google Scholar 

  • Mikic, B. (1971). Analytical Studies of Contact of Nominally Flat Surfaces Effect of Previous Loading. Trans ASME, J Lub Technol, 20:451–456.

    Article  Google Scholar 

  • Williamson, M., and Majumdar, A. (1992). Effect of Surface Deformations on Contact Conductance. Trans ASME, J Heat Transfer, 114:802–810.

    Article  Google Scholar 

Effective Thermal Conductivity of Packed Beds

  • Chan, CK., and Tien, C.L. (1973). Conductance of Packed Spheres in Vacuum. Trans ASME, J Heat Transfer, 95:302–308.

    Article  Google Scholar 

  • Chen, J.C., and Churchill, S.W. (1963). Radiant Heat Transfer in Packed Beds. Am Inst Chem Eng, 9(1):35–41.

    Google Scholar 

  • Hadley, G.R. (1986). Thermal Conductivity of Packed Metal Powders. Int J Heat Mass Transfer, 29:909–920.

    Article  Google Scholar 

  • Hsu, CT., Cheng, P., and Wong, K.W. (1994). Modified Zehner-Schlunder Models for Stagnant Thermal Conductivity of Porous Media. Int J Heat Mass Transfer, 37:2751–2759.

    Article  MATH  Google Scholar 

  • Kamiuto, K., Nagumo, Y., and Iwamoto, M. (1989). Mean Effective Thermal Conductivity of Packed-Sphere Systems. Appl Energy, 34:213–221.

    Article  Google Scholar 

  • Nasr, K., Viskanta, R., and Ramadhyani, S. (1994). An Experimental Evaluation of the Effective Thermal Conductivity of Packed Beds at High Temperatures. Trans ASME, J Heat Transfer, 116:829–837.

    Article  Google Scholar 

  • Ogniewicz, Y., and Yovanovich, M.M. (1977). Effective Thermal Conductivity of Regularly Packed Spheres: Basic Cell Model With Constriction. AIAA Paper 77–188. American Institute of Aeronautics and Astonautics, New York.

    Google Scholar 

  • Yovanovich, M.M. (1973). Apparent Conductivity of Glass Microspheres from Atmospheric Pressure to Vacuum. ASME Paper 73-HT-43. American Society of Mechanical Engineers, New York.

    Google Scholar 

  • Zehner, P., and Schlunder, E.U. (1970). Thermal conductivity of Granular Materials at Moderate Temperatures (In German). Chemie Ingenieur Technik, 42:933–941.

    Article  Google Scholar 

Stacks of Laminations

  • Al-Astrabadi, F.R., O’Callaghan, P.W., Probert, S.D., and Jones, A.M. (1977). Thermal Contact Conductance Correlation for Stacks of Thin Layers in High Vacuum. Trans ASME, J Heat Transfer, 99:139–142.

    Article  Google Scholar 

  • Babbus’Haq, R.F., Gibson, C., O’Callaghan, P.W., and Probert, S.D. (1991). Multilayer Thermally Insulating Ceramic Contacts. J Thermophys Heat Transfer, 5(3): 429–434.

    Article  Google Scholar 

  • Fletcher, L.S., Blanchard, D.G., and Kinnear, K.P. (1993). Thermal Conductance of Multilayered Metallic Sheets. J Thermophys Heat Transfer, 7(1):120–126.

    Article  ADS  Google Scholar 

  • Mikesell, R.P., and Scott, R.B. (1956). Heat Conduction Through Insulating Supports in Very Low Temperature Equipment. J Res, US Natl Bureau of Standards, 57(6): 371–378.

    Google Scholar 

  • Williams, A. (1971). Heat Flow Across Stacks of Steel Laminations. J Mech Eng Sci, 13(3):217–223.

    Article  Google Scholar 

Solid Spot Conductance of Specific Materials

  • Cross, R.W., and Fletcher, L.S. (1978). Thermal Contact Conductance of Uranium Dioxide-Zircaloy Interfaces. AIAA Paper 78–85. American Institute of Aeronautics and Astronautics, New York.

    Google Scholar 

  • Dean, R.A. (1962). Thermal Contact Conductance Between UO2 and Zircaloy-2. Westinghouse Electric Corporation, Report CVNA-127. Westinghouse, Pittsburgh, PA.

    Google Scholar 

  • Gamier, J.E., and Begej, S. (1979). Ex-Reactor Determination of Thermal Gap Conductance Between Uranium Dioxide: Zircaloy-4 Interfaces. NUREG/CR-0330, PNL-2696, Battelle-Pacific Northwest Laboratories, 1979. US Nuclear Regulatory Commission, Washington, DC.

    Google Scholar 

  • Jacobs, G., and Todreas, N. (1973). Thermal Contact Conductance in Reactor Fuel Elements. J Nucl Sci Eng, 50:283–306.

    Google Scholar 

  • Madhusudana, C.V. (1980). Experiments on Heat Flow Through Zircaloy-2/Uranium Dioxide Surfaces in Contact. J Nuc Mater, 92:345–348.

    Article  ADS  Google Scholar 

  • Madhusudana, C.V., and Fletcher, L.S. (1983). Solid Spot Thermal Conductance of Zircaloy-2/Uranium Dioxide Interfaces. J Nucl Sci Eng, 83:327–332.

    Google Scholar 

  • Miller, R.G., and Fletcher, L.S. (1973). Thermal Contact Conductance of Porous Materials in a Vacuum Environment. AIAA Paper 73–747. American Institute of Aeronautics and Astronautics, New York.

    Google Scholar 

  • Miller, R.G., and Fletcher, L.S. (1975). Thermal Contact Conductance Correlation for Porous Metals. Prog Astro Aero, 39:81–92.

    Google Scholar 

  • Ross, A.M., and Stoute, R.L. (1962). Heat Transfer Coefficient Between UO2 and Zircaloy-2, Report CRFD-1075, Chalk River, Ontario, Canada.

    Google Scholar 

  • Thomas, T.R., and Probert, S.D. (1972). Correlations for Thermal Contact Conductance in Vacuo. Trans ASME, J Heat Transfer, 94:276–281.

    Article  Google Scholar 

Thermal Contact Resistance in the Presence of Oxide Films

  • Al-Astrabadi, F.R., O’Callaghan, P.W., and Probert, S.D. (1980). Thermal Resistance of Contacts: Influence of Oxide Films. Prog Aero Astro, 78:266–284.

    Google Scholar 

  • Kharitonov, V.V., Kokorev, L.S., and Tyurin, Yu.A. (1974). Effect of Thermal Conductivity of Surface Layer on Contact Thermal Resistance. Atomnaya Energiya, 36(4):308–310.

    Google Scholar 

  • Mian, M.N., Al-Astrabadi, F.R., O’Callaghan, P.W., and Probert, S.D. (1979). Thermal Resistance of Pressed Contacts Between Steel Surfaces: Influence of Oxide Films. J Mech Eng Sci, 21:159–166.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Springer-Verlag New York Inc.

About this chapter

Cite this chapter

Madhusudana, C.V. (1996). Special Topics in Thermal Contact Conductance. In: Thermal Contact Conductance. Mechanical Engineering Series. Springer, New York, NY. https://doi.org/10.1007/978-1-4612-3978-9_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-3978-9_7

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4612-8457-4

  • Online ISBN: 978-1-4612-3978-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics