Skip to main content

Gas Gap Conductance

  • Chapter

Part of the book series: Mechanical Engineering Series ((MES))

Abstract

At low contact pressures (of the order of 10-4 H or less), it can be shown that the heat transfer across a joint occurs mainly through the gas gap (Madhusudana, 1993). Boeschoten and van der Held (1957) had also made the qualitative observation that heat transfer was predominantly through the gas gap for “low (up to several kg/sq cm)” contact pressures. Furthermore, Lang (1962) pointed out that the convective heat transfer is usually negligible for gap widths of up to about 6 mm (corresponding to Grashof numbers of 2000 for air at atmospheric pressure of 101 kPa and temperature of 300 K). Since the mean separation between contacting engineering surfaces is some three orders of magnitude less than this dimension, it is clear that convection cannot be the mode of the heat transfer across the gas gap. Thus, the mode of heat transfer across the gas filling the voids between the actual contact spots, as also noted earlier, is principally by conduction.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   89.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Aaron, R.L. (1963). A Theoretical Study of the Thermal Conductance of Joints with Varying Ambient Pressure. MS Thesis, Southern Methodist University, Dallas.

    Google Scholar 

  • Antonetti, V.W. (1992). Statistical Variability of Thermal Interface Conductance. NSF/DITAC Workshop, Melbourne, Australia, pp. 37–45.

    Google Scholar 

  • Blodgett, K.B., and Langmuir, I. (1932). The Accommodation Coefficient of Hydrogen: A Sensitive Detector of Surface Films. Phys Rev, 40:78–104.

    Article  ADS  Google Scholar 

  • Boeschoten, F., and Van der Held, E.F.M. (1957). The Thermal Conductance of Contacts Between Aluminium and Other Metals. Physica, 23:37–44.

    Article  ADS  Google Scholar 

  • Cassidy, J.F., and Mark, H. (1969). Thermal Contact Resistance Measurements at Ambient Pressures to 3 x 10~12 Mm Hg and Comparison with Theoretical Predictions. NASA, Technical Memorandum X-52566.

    Google Scholar 

  • Cetinkale, T.N., and Fishenden, M. (1951). Thermal Conductance of Metal Surfaces in Contact. Proc Gen Disc Heat Transfer. Institute of Mechanical Engineers, London, pp. 271–275.

    Google Scholar 

  • Cohen, I., Lustman, B., and Eichenberg, J.D. (1960). Measurement of Thermal Conductivity of Metal-Clad Uranium Oxide Rods During Irradiation. Report Wapd-288. Bettis Atomic Power Laboratory, Washington, DC.

    Google Scholar 

  • Dharmadurai, G., (1983). Estimation of Thermal Accommodation Coefficients for Inert Gases on Nuclear Materials. J App Phys, 54(10):5990–5992.

    Article  ADS  Google Scholar 

  • Dutkiewicz, R.K. (1966). Interfacial Gas Gap for Heat Transfer Between Two Randomly Rough Surfaces. 3rd Int Heat Transfer Conf, 4:118–126.

    Google Scholar 

  • Hall, R.O.A., Martin, D.G., and Mortimer, M.J. (1990). The Thermal Conductivity of UO2 Sphere-Pac Beds. J Nucl Mat, 173:130–141.

    Article  ADS  Google Scholar 

  • Hardee, H.C., and Green, W.R. (1968). Thermal Conductivity in Small Air Gaps at Very Low Pressures. Sc-Tm-68–309, Sandia Laboratory, Albuquerque, NM.

    Google Scholar 

  • Hegazy, A.H. (1985). Thermal Joint Conductance of Conforming Rough Surfaces: Effect of Surface Micro-Hardness Variation. Ph.D. Thesis, University of Waterloo, Canada [Cited In Negus and Yovanovich (1988)].

    Google Scholar 

  • Kennard, E.H. (1938). Kinetic Theory of Gases. McGraw-Hill, New York, pp. 311–327.

    Google Scholar 

  • Kharitonov, V.V., Kokorev, L.S., and Del’vin, N.N. (1973). On the Role of the Accommodation Coefficient in Contact Heat Exchange. Atomnaya Energiya, 35(5):360–361.

    Google Scholar 

  • Knudsen, M. (1934). The Kinetic Theory of Gases. Methuen, London, pp. 46–61.

    MATH  Google Scholar 

  • Lang, P.M. (1962). Calculating Heat Transfer Across Small Gas-Filled Gaps. Nucleonics, 20(l):62–63.

    Google Scholar 

  • Madhusudana, C.V. (1975). The Effect of Interface Fluid on Thermal Contact Conductance. Int J Heat Mass Transfer, 18:989–991.

    Article  Google Scholar 

  • Madhusudana, C.V. (1993). Thermal Contact Conductance and Rectification at Low Joint Pressures. Int Comm Heat Mass Transfer, 20:123–132.

    Article  Google Scholar 

  • Madhusudana, C.V., and Fletcher, L.S. (1981). Gas Conductance Contribution to Contact Heat Transfer. AI A A Paper 81–1163. American Institute of Aeronautics and Astronautics, New York.

    Google Scholar 

  • Majumdar, A., and Williamson, M. (1990). Effect of Interstitial Media on Contact Conductance: A Fractal Approach. ASME HTD, 153:49–57.

    Google Scholar 

  • Negus, K.J., and Yovanovich, M.M. (1988). Correlation of the Gap Conductance Integral for Conforming Rough Surfaces. J Thermophy Heat Transfer, 2:279–281.

    Article  ADS  Google Scholar 

  • Nishino, K., and Torii, K. (1994). Thermal Contact Conductance of Wavy Metal Surfaces Under Arbitrary Ambient Pressure. Proc 10th Intl Heat Transfer Conf, Paper No. 15 C-118. Institution of Chemical Engineers, Rugby, UK.

    Google Scholar 

  • Popov, V.M., and Krasnoborod’ko, A.I. (1975). Thermal Contact Resistance in a Gaseous Medium. Inzhenerno-Fizicheski Zhurnal, 28(5):875–883.

    Google Scholar 

  • Rapier, A.C., Jones, T.M., and Mcintosh, J.E. (1963). The Thermal Conductance of Uranium Dioxide/Stainless Steel Interfaces. Int J Heat Mass Transfer, 6:397–416.

    Article  Google Scholar 

  • Roberts, J.K. (1932). The Exchange of Energy Between Gas Atoms and Solid Surfaces II: The Temperature Variation of Accommodation Coefficient of Helium. Proc R Soc (London), Ser. A, 135:192–205.

    Article  ADS  MATH  Google Scholar 

  • Semyonov, Yu.G., Borisov, S.E., and Suetin, P.E. (1984). Investigation of Heat Transfer in Rarefied Gases Over a Wide Range of Knudsen Numbers. Int J Heat Mass Transfer, 27:1789–1799.

    Article  ADS  Google Scholar 

  • Shlykov, Yu.P., and Ganin, Ye.A. (1964). Thermal Resistance of Metallic Contacts. Int J Heat Mass Transfer, 7:921–929.

    Article  Google Scholar 

  • Smoluchowski, M.S. (1898). On Conduction of Heat in Rarefied Gases. Phil Mag J Sci, Ser. 5, 192–206.

    Google Scholar 

  • Song, S., and Yovanovich, M.M. (1987). Correlation of Thermal Accommodation Coefficient for Engineering Surfaces. ASME HTD, 69:107–116.

    Google Scholar 

  • Song, S., Yovanovich, M.M., and Nho, K. (1989). Thermal Gap Conductance: Effect of Gas Pressure and Mechanical Load. AIAA Paper 89–0429. American Institute of Aeronautics and Astronautics, Washington, DC.

    Google Scholar 

  • Song, S., Yovanovich, M.M., and Goodman, F.O. (1993). Thermal Gap Conductance of Conforming Rough Surfaces in Contact. Trans ASME, J Heat Transfer, 115: 533–540.

    Article  Google Scholar 

  • Thomas, L.B., and Brown, R.E. (1950). The Accommodation Coefficient of Gases on Platinum as a Function of Pressure. J Chem Phys, 18:1367–1372.

    Article  ADS  Google Scholar 

  • Thomas, L.B., and Loyalka, S.K. (1982). Determination of Thermal Accommodation Coefficients of Inert Gases on a Surface of Vitreous UO2 at 35 °C. Nucl Technol, 59:63–69.

    Google Scholar 

  • Ullman, A., Acharya, R., and Olander, D.R. (1974). Thermal Accommodation Coefficients of Inert Gases on Stainless Steel and UO2. J Nucl Mat. 51:277–279.

    Article  ADS  Google Scholar 

  • Vickerman, R.H., and Harris, R. (1975). The Thermal Conductivity and Temp Jump Distance of Gas Mixtures. Am Nucl Soc, Winter Meeting. American Nuclear Society, San Francisco.

    Google Scholar 

  • Wachman, H.Y. (1962). The Thermal Accommodation Coefficient: A Critical Survey. ARS J, 32:2–12.

    Google Scholar 

  • Wiedmann, M.L., and Trumpler, P.R. (1946). Thermal Accommodation Coefficients. Trans ASME, 68:57–64.

    Google Scholar 

  • Yovanovich, M.M. (1981). New Contact and Gap Conductance Correlations for Conforming Rough Surfaces. AI A A Paper 81–1164. American Institute of Aeronautics and Astronautics, New York.

    Google Scholar 

  • Yovanovich, M.M. (1986). Recent Developments in Thermal Contact, Gap and Joint Conductance Theories and Experiments. 8th Int Heat Transfer Conf, 1:35–45.

    Google Scholar 

  • Yovanovich, M.M., DeVaal, J.W., and Hegazy, A.A. (1982). A Statistical Model to Predict Thermal Gap Conductance Between Conforming Rough Surfaces. AIAA Paper 82–0888. American Institute of Aeronautics and Astronautics, New York.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Springer-Verlag New York Inc.

About this chapter

Cite this chapter

Madhusudana, C.V. (1996). Gas Gap Conductance. In: Thermal Contact Conductance. Mechanical Engineering Series. Springer, New York, NY. https://doi.org/10.1007/978-1-4612-3978-9_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-3978-9_4

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4612-8457-4

  • Online ISBN: 978-1-4612-3978-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics