Skip to main content

Part of the book series: Mechanical Engineering Series ((MES))

Abstract

Microscopic and macroscopic irregularities are present in all practical solid surfaces. Surface roughness is a measure of the microscopic irregularity, whereas the macroscopic errors of form include flatness deviations, waviness and, for cylindrical surfaces, out-of-roundness. Two solid surfaces apparently in contact, therefore, touch each other only at a few individual spots (Fig. 1.1). Even at relatively high contact pressures of the order of 10 MPa, the actual area of contact for most metallic surfaces is only about 1 to 2% of the nominal contact area (see, e.g., Bowden and Tabor, 1950). Since the heat flow lines are constrained to flow through the sparsely spaced actual contact spots, there exists an additional resistance to heat flow at a joint. This resistance manifests itself as a sudden temperature drop at the interface.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Asensio, M.C., Seyed-Yagoobi, J., and Fletcher, LS. (1993). Thermal Contact Conductance of a Moist Paper Handsheet/Metal Interface for Paper Drying Applications. Trans ASME, Heat Transfer, 115:1051–1053.

    Article  Google Scholar 

  • Attia, M.H., and Kops, L. (1980). Importance of Contact Pressure Distribution on Heat Transfer in Structural Joints of Machine Tools. Trans ASME, J Eng Ind, 102:159–167.

    Article  Google Scholar 

  • Attia, M.H., and Osman, M.O.M. (1988). Thermal Response of Metallic Moulds to Thermoelastic Interaction at Its Mould Inner Boundary. Thermal Aspects in Manufacturing, ASME, PED, 30:63–76.

    Google Scholar 

  • Barzelay, M.E., Tong, K.N., and Hollo, C. (1954). Thermal Conductance of Contacts in Aircraft Joints. US Natl Adv Comm Aeronautics. Washington, DC.

    Google Scholar 

  • Bowden, F.P., and Tabor, D. (1950). The Friction and Lubrication of Solids. Oxford University Press, London, pp. 20–32.

    Google Scholar 

  • Burton, R.A., and Burton, R.G. (1991). Cooperative Interactions of Asperities in the Thermotribology of Sliding Contacts IEEE Trans, Components, Hybrids, pp. 23–25.

    Google Scholar 

  • Childres, W.S., and Peterson, G.P. (1989). Quantification of Thermal Contact Conductance in Electronic Packages. IEEE Trans, Components, Hybrids, pp. 717–723.

    Google Scholar 

  • Dean, R.A. (1962). Thermal Contact Conductance Between UO2 and Zircaloy-2 Westinghouse Electric Corporation, Report CVNA-127 Pittsburgh, PA.

    Google Scholar 

  • Fitch, J.S. (1990). A One-Dimensional Thermal Model for the Vax 9000 Multi-Chip Units. Am Soc Mech Eng, 153:59–64.

    Google Scholar 

  • Fletcher, L.S. (1973). Thermal Control Materials for Spacecraft Systems. 10th Int Symp Space Technol Sci, Tokyo, pp. 579–586.

    Google Scholar 

  • Fletcher, L.S. (1988). Recent Developments in Contact Conductance Heat Transfer. Trans ASME, J Heat Transfer, 110:1059–1070.

    Article  ADS  Google Scholar 

  • Fletcher, L.S. (1990). A Review of Thermal Enhancement Techniques for Electronic Systems IEEE Trans, Components, Hybrids, Manuf Technol, 13(4): 1012–1021.

    Article  Google Scholar 

  • Im, Y.T., and Altan, T. (1988). Heat Generation and Transfer in Metal Forming: Recent Developments. Thermal Aspects in Manufacturing, ASME, PED, 30:77–88.

    Google Scholar 

  • Kennedy, F.E., Jr. (1984). Thermal and Thermomechanical Effects in Dry Sliding. Wear, 100:453–476.

    Article  Google Scholar 

  • Kraus, A.D., and Bar-Cohen, A. (1983). Thermal Analysis and Control of Electronic Equipment. McGraw-Hill, New York, pp. 199–214.

    Google Scholar 

  • Lavine, A.S., and Jen, T.-C. (1989). Thermal Aspects of Grinding: Heat Transfer to Workpiece, Wheel and Fluid, J Heat Transfer, 123:267–274.

    Google Scholar 

  • Madhusudana, C.V., and Fletcher, L.S. (1986). Contact Heat Transfer—The Last Decade, AIAA J, 24(3):510–523.

    Article  MathSciNet  ADS  Google Scholar 

  • Madhusudana, C.V., Peterson, G.P., and Fletcher, L.S. (1988). Effect of Non-Uniform Pressures on the Thermal Conductance in Bolted and Riveted Joints, Am Soc Mech Eng, 104:57–67.

    Google Scholar 

  • Mikeseil, R.P., and Scott, R.B. (1956). Heat Conduction Through Insulating Supports in Very Low Temperature Equipment. J Res, US Natl Bureau Standards, 57(6): 371–378.

    Google Scholar 

  • Reiss, H. (1981). An Evacuated Powder Insulation for a High Temperature Na/S-Battery. AIAA Paper 81–1107, New York.

    Google Scholar 

  • Scott, A.W. (1974). Cooling of Electronic Equipment. John Wiley, New York, pp. 1–43.

    Google Scholar 

  • Snaith, B., Probert, S.D., and O’Callaghan, P.W. (1986). Thermal Resistance of Pressed Contacts. Appl Energy, 22:31–84.

    Article  Google Scholar 

  • Taborek, J. (1987). Bond Resistance and Design Temperatures for High-Finned Tubes—A Reappraisal Heat Transfer Eng, 8(2):26–34.

    Google Scholar 

  • Tummala, R.R., and Rymaszewski, E.J. (eds.). (1989). Microelectronics Paackaging Handbook. Van Nostrand Reinhold, New York, pp. 211–213.

    Google Scholar 

  • Williams, A. (1968). Heat Transfer Across Metallic Joints Inst Eng (Australia) Mech Chem Eng Trans, 4:247–254.

    Google Scholar 

  • Wong, H.Y. (1968). A Survey of Thermal Conductance of Metallic Contacts. Aeronautical Research Council, CIP No. 973, London.

    Google Scholar 

  • Wood, R.A., Sheffield, J.W., and Sauer, HJ., Jr. (1987a). Thermal Contact Conductance of Finned Tubes: The Effect of Various Parameters. ASHRAE Trans, 93(2): 798–809.

    Google Scholar 

  • Wood, R.A., Sheffield, J.W., and Sauer, HJ., Jr. (1987b). Thermal Contact Conductance of Finned Tubes: A Generalized Correlation ASHRAE Trans, 93(2):786–796.

    Google Scholar 

  • Yu, C.J., Sunderland, J.E., and Poli, C. (1990). Thermal Contact Resistance in Injection Molding. Polym Eng Sci, 30(24):1599–1606.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Springer-Verlag New York Inc.

About this chapter

Cite this chapter

Madhusudana, C.V. (1996). Introduction. In: Thermal Contact Conductance. Mechanical Engineering Series. Springer, New York, NY. https://doi.org/10.1007/978-1-4612-3978-9_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-3978-9_1

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4612-8457-4

  • Online ISBN: 978-1-4612-3978-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics