Skip to main content

Constraints on Terrestrial Primary Productivity in Temperate Forests Along the Pacific Coast of North and South America

  • Chapter

Part of the book series: Ecological Studies ((ECOLSTUD,volume 116))

Abstract

When residents of the temperate forest regions along the Pacific Ocean of North and South America exchange places, their first impression is that the climates of the two continents are similar but out of phase. The second impression is that the forests, although predominantly evergreen in both places, differ in form. Broadleaf, broad-crowned trees are common in the south; whereas narrowleaf, narrow-crowned trees occur in the north. In both regions, the climates are moderated by the Pacific Ocean. This maritime influence allows considerable photosynthesis by evergreen species beyond the normal growing season (Alaback, 1991; Waring & Franklin, 1979).

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Alaback, P.B. 1991. Comparative ecology of temperate rainforests of the Americas along analogous climatic gradients. Rev Chil Hist Nat, 64, 399–412.

    Google Scholar 

  • Axelrod, D.I., Kalin-Arroyo, M.T., and Raven, P.H. 1991. History of temeprate rainforests of the Americas. Rev Chil Hist Nat, 64, 413–436.

    Google Scholar 

  • Babalola, O., Boersma, L., and Youngberg, C.T. 1968. Photosynthesis and transpiration of Monterey pine seedlings as a function of soil water suction and soil temperature. Plant Physiol, 43, 515–521.

    Article  CAS  Google Scholar 

  • Dulucia, E.H. 1987. Air and soil temperature limitations on photosynthesis in Engelmann spruce during summer. Can J For Res, 17, 527–533.

    Article  Google Scholar 

  • Franklin, J.F. , and Dyrness, C.T. 1973. Natural vegetation of Oregon and Washington. U.S. Department of Agriculture, Forest Service, Pacific Northwest Forest and Range Experiment Station, General Techical Report PNW-8, Portland, OR.

    Google Scholar 

  • Goulden, M.L. 1991. Nutrient and water utilization by evergreen oaks that differ in rooting depth. Unpublished doctoral dissertation, Stanford University, Palo Alto, CA.

    Google Scholar 

  • Goward, S.N., Dye, D., Kerber, A., and Kalb, V. 1987. Comparison of North and South American Biomes from AVHRR observations. Geocarto Int, 2, 27–39.

    Article  Google Scholar 

  • Hawkins, B.J., and Sweet, G.B. 1989. Photosynthesis and growth of present New Zealand forest trees related to ancient climates. Ann Sci For, 512S-514S.

    Google Scholar 

  • Kaufmann, M.R. 1977. Soil temperature and drought effects on growth of Monterey pine. For Sci, 23, 317–325.

    Google Scholar 

  • Kramer, P.J. 1983. Water Relations of Plants New York: Academic Press.

    Google Scholar 

  • Lara, A.A. 1985. Los ecosistemas forestales en el desarrollo de Chile. Amb Des, 1, 81–99.

    Google Scholar 

  • Lawford, R.G. 1995. In R.G. Lawford, P. Alaback, and E.R. Fuentes (eds.), High Latitude Rainforests and Associated Ecosystems of the West Coast of the Americas: Climate, Hydrology, Ecology, and Conservation. New York: Springer Verlag.

    Google Scholar 

  • Mason, H.L., and Lagenheim, J.H. 1957. Language analysis and the concept of environment. Ecology, 38, 325–339.

    Article  Google Scholar 

  • McMurtrie, R.E., Comins, H.N., Kirschbaum, M.U.F., and Wang, Y.-P. 1992. Modifying existing forest growth models to take account of effects of elevated CO2. Aust J Bot, 40, 657–677.

    Article  CAS  Google Scholar 

  • Mooney, H.A. 1972. The carbon balance of plants. Ann Rev Ecol Sys, 3, 315–346.

    Article  CAS  Google Scholar 

  • Pothier, D., Margolis, H.A., and Waring, R.H. 1989. Patterns of change of saturated sapwood permeability and sapwood conductance with stand development. Can J For Res, 19, 432–439.

    Article  Google Scholar 

  • Raupach, M.R. 1989. Turbulent transfer in plant canopies. In G. Russell, B. Marshall, and P.G. Jarvis (eds.), Plant Canopies: Their Growth, Form and Function (pp. 41–61). Cambridge, England: Cambridge Universtiy Press.

    Chapter  Google Scholar 

  • Raven, P.H. , and Axelrod, D.I. 1974. Angiosperm biogeography and past continental movements. Ann Miss Bot Gard, 61, 539–673.

    Article  Google Scholar 

  • Read, J., and Busby, J.R. 1990. Comparative responses to temperature of the major canopy species of Tasmanian cool temperate rainforest and their ecological significance. II. Net photosynthesis and climate analysis. Aust J Bot, 38, 185–305.

    Article  Google Scholar 

  • Read, J., and Hill, R.S. 1985. Photosynthetic responses to light of Australian and Chilean species of Nothofagus and their relevance to rainforest dynamics. New Phytol, 101, 731–742.

    Article  Google Scholar 

  • Revkin, A.C. 1988. Endless summer: living with the greenhouse effect. Discover, 9, 50–60.

    Google Scholar 

  • Running, S.W. 1984. Fort Collins, CO: U.S.D.A., Forest Service, Rocky Mountain Forest and Range Experiment Station, Research Paper RM-225.

    Google Scholar 

  • Running, S.W. 1994. Testing forest-BGC ecosystem process simulations across a climatic gradient in Oregon. Ecol Appl, 4, 238–247.

    Article  Google Scholar 

  • Running, S.W., and Coughlan, J.C. 1988. A general model of forest ecosystem processes for regional applications. I. Hydrologic balance, canopy gas exchange and primary production processes. Ecol Model, 42, 125–154.

    Article  CAS  Google Scholar 

  • Running, S.W., and Gower, S.T. 1991. FOREST-BGC, a general model of forest ecosystem processes for regional applications. II. Dynamic carbon allocation and nitrogen budgets. Tree Physiol, 9, 147–160.

    CAS  Google Scholar 

  • Running, S.W., Waring, RH., and Rydell, R.A. 1975. Physiological control of water flux in conifers. Oecologia, 18, 1–16.

    Google Scholar 

  • Runyon, J., Waring, R.H., Goward, S.N. and Welles, J.M. 1994. Environmental limits on above-ground production: observations from the Oregon transect. Ecol Appl, 4, 226–237.

    Article  Google Scholar 

  • Ryan, M.G. 1991. A simple method for estimating gross carbon budgets for vegetation in forest ecosystems. Tree Physiol, 9, 255–266.

    Google Scholar 

  • Ryan, M.G., and Waring, R.H. 1992. Maintenance respiration and stand development in a subalpine lodgepole pine forest. Ecology, 73, 734–763.

    Article  Google Scholar 

  • Schmidt, H., and Lara, A. 1985. Descripcion y potencialidad de los bosques nativos de Chile. Amb Des, 2, 91–108.

    Google Scholar 

  • Stark, N., Essig, D., and Baker, S. 1989. Nutrient concentration in Pinus ponderosa and Pseudotsuga menziesii xylem sap from acid and alkaline soils. Soil Sci, 148, 124–131.

    Article  CAS  Google Scholar 

  • Teskey, R.O. 1982. Acclimation of Abies amabilis to Water and Temperature in a Natural Environment. Unpublished doctoral dissertation, University of Washington., Seattle, WA.

    Google Scholar 

  • Tyree, M.L., and Sperry, J.S. 1988. Do woody plants operate near the point of catastrophic xylem dysfunction by dynamic water stress? Plant Physiol, 88, 574–580.

    Article  CAS  Google Scholar 

  • Wang, Y.-P., and Jarvis, P.G. 1990. Description and validation of an array model—MAESTRO. Agri For Meteorol, 51, 257–280.

    Article  Google Scholar 

  • Wang, Y.-P., McMurtrie, R.E., and Landsberg, J.J. 1992. Modelling canopy photosynthetic productivity. In N.R. Baker and H. Thomas (eds.), Crop Photosynthesis, Topics in Photosynthesis (pp. 43–67), Vol. 12. Amsterdam: Elsevier.

    Google Scholar 

  • Waring, R.H., and Cleary, B.D. 1967. Plant moisture stress: Evaluation by pressure bomb. Science, 155, 1248–1254.

    Article  CAS  Google Scholar 

  • Waring, R.H., and Franklin, J.F. 1979. Evergreen forests of the Pacific Northwest. Science, 204, 1380–1386.

    Article  CAS  Google Scholar 

  • Waring, R.H., Runyon, J., Goward, S.N., McCreight, R., Yoder, B., and Ryan, M.G. 1993. Developing remote sensing techniques to estimate photosynthesis and annual forest growth across a steep climatic gradient in western Oregon, U.S.A. Stud For Suec, 191, 33–42.

    Google Scholar 

  • Waring, R.H., Savage, T., Cromack, K., Jr., and Rose, C. 1992. Thinning and nitrogen fertilization in a grand fir stand infested with western spruce budworm. Part IV. An ecosystem management perspective. For Sci, 38, 275–286.

    Google Scholar 

  • Waring, R.H., and Schlesinger, W.H. 1985. Forest Ecosystems: Concepts and Management. Orlando, FL: Academic Press.

    Google Scholar 

  • Waring, R.H. and Silvester, W.B. 1994. Variation in foliar δ 13C values within the crowns of Pinus radiata trees. Tree Physiol, 14, 1203–1213.

    Google Scholar 

  • Yoder, B.J., Ryan, M.G., Waring, R.H., Schoettle, A.W. and Kaufmann, M.R. 1994. Evidence of reduced photosynthetic rates in old trees. For Sci, 40, 513–527.

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Springer-Verlag New York, Inc.

About this chapter

Cite this chapter

Waring, R.H., Winner, W.E. (1996). Constraints on Terrestrial Primary Productivity in Temperate Forests Along the Pacific Coast of North and South America. In: Lawford, R.G., Fuentes, E., Alaback, P.B. (eds) High-Latitude Rainforests and Associated Ecosystems of the West Coast of the Americas. Ecological Studies, vol 116. Springer, New York, NY. https://doi.org/10.1007/978-1-4612-3970-3_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-3970-3_6

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4612-8453-6

  • Online ISBN: 978-1-4612-3970-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics