Advertisement

The Temperate Rainforest Lakes of Chile and Canada: Comparative Ecology and Sensitivity to Anthropocentric Change

  • Doris Soto
  • John G. Stockner
Part of the Ecological Studies book series (ECOLSTUD, volume 116)

Abstract

Temperate rainforests are among the most environmentally sensitive and biologically diverse ecosystems in the world. They are currently under heavy exploitive pressures and the subject of international controversy. Along with their roles as providers of unique and diverse species habitats and as major players in global carbon cycling, they also serve as collection basins for many large lakes of ecological and economic importance. The catchments of Chilean Araucanian lakes (39° to 42°S) and south coastal British Columbian (BC) lakes (49° to 51°N) (Figure 13.1) are in rainforest biogeoclimatic zones and share common properties, for example, climate, age and glacial origin, morphometry, and the oligotrophic state (i.e., <10ug·L-1 average total phosphorus (TP) content) (Vollenweider, 1968; Campos, 1984; Soto & Zuñiga, 1991; Stockner, 1981, 1987).

Keywords

Total Phosphorus Total Dissolve Solid British Columbian Sockeye Salmon Cutthroat Trout 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alaback, P.B. 1991. Comparison of the temperate rain forests of the Americas. Rev. Chil His Nat, 64, 399–412.Google Scholar
  2. Campos, H. 1977. Osteichtyes. In S. Huribert (ed.), Biota Acutatica de Sud America Austral (pp. 330–334). San Diego: San Diego State University Foundation.Google Scholar
  3. Campos, H. 1984. Limnological study of Araucanian Lakes (Chile) Verh Intern verein Limnol, 22, 1319–1327.Google Scholar
  4. Campos, H., Arenas, J., Jara, C., Gonser, T., and Prins, R. 1984. Macrozoobentos y fauna ictica de las aguas limnéticas de Chiloé y Aisén continentales. Revista Medio Ambiente, 52–64.Google Scholar
  5. Campos, H., Steffen, W., Aguero, G., Parra, O., and Zuñiga, L. 1988. Limnological study of lake Llanquihue (Chile). Morphometry, physics, chemistry, plankton and primary productivity. Archiv fur Hydrobiol, Supplement, 81(1), 37–67.Google Scholar
  6. Campos, H., Steffen, W., Aguero, G., Parra, O., and Zuñiga, L. 1990. Limnological study of lake Todos los Santos (Chile). Morphometry, physics, chemistry, plankton and primary productivity. Archiv fur Hydrobiol, 117, 453–484.Google Scholar
  7. Culver, D.A., Bouchele, M.M., Bean, D.J., and Fletcher, J.W. 1985. Biomass of freshwater crustacean Zooplankton from length-weight regressions. Can J Fish Aquat Sci, 42, 1380–1390.CrossRefGoogle Scholar
  8. Dillon, P., and Rigler, F. 1974. The phosphorus-chlorophyll relationship in lakes. Limnol Oceanogr, 19, 767–773.CrossRefGoogle Scholar
  9. Dumont, H.J., Van de Velde, I., and Dumont, S. 1975. The dry weight estimate of biomass in a selection of Cladocera, Copepods, and Rotifera from the plankton, periphyton, and benthos of continental waters. Oecologia, 19, 75–95.CrossRefGoogle Scholar
  10. Edmondson, W.T., and Lehman, J.T. 1981. The effect of changes in the nutrient income on the condition of Lake Washington. Limnol Oceanogr, 26, 1–29.CrossRefGoogle Scholar
  11. Farley, A.L. 1979. Atlas of British Columbia. Vancouver: University of British Columbia Press.Google Scholar
  12. Feller, M.C. 1977. Nutrient movement through western hemlock/western red cedar ecosystems in SW British Columbia. Ecology, 58, 1269–1283.CrossRefGoogle Scholar
  13. Hardy, F.J., Shortreed, K.S., and Stockner, J.G. 1986. Bacterioplankton, phytoplankton, and Zooplankton communities in a British Columbia coastal lake before and after nutrient reduction. Can J Fish Aquat Sci, 43, 1504–1514.CrossRefGoogle Scholar
  14. Henderson, M., Stockner, J.G., and Levy, D.A. 1992. Probable consequences of climate change on freshwater aspects of the production of Adams River sockeye salmon (Oncorhynchus nerka). Geo Journal, 28, 51–59.Google Scholar
  15. Hyatt, K.D., and Stockner, J.G. 1985. Responses of sockeye salmon (Oncorhynchus nerka) to fertilization of British Columbia lakes. Can J Fish Aquat Sci, 42, 320–331.CrossRefGoogle Scholar
  16. Jackson, L.J., Stockner, J.G., and Harrison, P.J. 1990. Contribution of Rhizosolenia erinensis and Cyclotella spp. to the deep chlorophyll maximum in Sproat Lake, British Columbia, Canada. Can J Fish Aquat Sci, 47, 128–136.CrossRefGoogle Scholar
  17. Kerekes, J.J. 1975. Phosphorus supply in undisturbed lakes in Kejimkujik National Park, Nova Scotia. Verh Intern verein Limnol, 19, 1–18.Google Scholar
  18. Montecino, V. 1991. Primary productivity in South American temperate lakes and reservoirs. Rev Chil Hist Nat, 64, 555–567.Google Scholar
  19. O’Neill, S.M., and Hyatt, K.D. 1987. An experimental study of competition for food between sockeye salmon (Oncorhynchus nerka) and three sticklebacks (Gasterosteus aculeatus) in a British Columbia coastal lake. In H.D. Smith, L. Margolis, and C.C. Wood (eds.), Sockeye salmon (Oncorhynchus nerka) population biology and future management. Can Spec Publ Fish Aquat Sci, 96, 143–160.Google Scholar
  20. Perez, C., Armesto, J.J., and Ruthsatz, B. 1991. Descomposición de hojas, biomasa de raices y características de los suelos en bosques mixtos de coníferas y especies laurifolias en el Parque Nacional de Chiloe. Rev Chil Hist Nat, 64, 479–490.Google Scholar
  21. Pezzani, S. 1977. Copepoda. In S. Huribert (ed.), Biota Acuatica de Sud America Austral (pp. 139–144). San Diego: San Diego State University Foundation.Google Scholar
  22. Prepas, E.E., and Drew, D.O. 1983. Evaluation of the phosphorus—chlorophyll relationship for lakes off the Precambrian Shield in western Canada. Can J Fish Aquat Sci, 40, 27–35.CrossRefGoogle Scholar
  23. Rankin, D.P., and Ashton, H.J. 1980. Crustacean Zooplankton abundance and species composition in 13 sockeye salmon (Oncorhynchus nerka) nursery lakes in British Columbia. Can Tech Rep Fish Aquat Sci, No. 1957.Google Scholar
  24. Rankin, D.P., Ashton, H.J., and Kennedy, O.D. 1984. Zooplankton abundance in lakes sampled by the 1978 lake enrichment program. Part 2: Central and North Coast, Skeena and Nass Systems. Can Data Rep Fish Aquat Sci, No. 459.Google Scholar
  25. Scavia, D., and Fahnenstiel, G.L. 1988. From picoplankton to fish: Complex interactions in the Great Lakes. In R. Carpenter (ed.), Complex Interactions in Lake Communities (pp. 68–85). New York: Springer-Verlag.Google Scholar
  26. Shortreed, K.S., and Stockner, J.G. 1986. Trophic status of 19 sub-arctic lakes in the Yukon Territories. Can J Fish Aquat Sci, 43, 797–805.CrossRefGoogle Scholar
  27. Shortreed, K.S., and Stockner, J.G. 1990. Effect of nutrient additions on lower trophic levels of an oligotrophic lake with a seasonal deep chlorophyll maximum. Can J Fish Aquat Sci, 47, 262–273.CrossRefGoogle Scholar
  28. Simpson, K.L., Wo, L. Hop, and Miki, I. 1981. Fish surveys of 15 sockeye salmon (Oncorhynchus nerka) nursery lakes in British Columbia. Can Tech Rep Fish Aquat Sci, 1022.Google Scholar
  29. Smith, V. 1982. The nitrogen and phosphorus dependence of algal biomass in lakes: An empirical and theoretical analysis. Limnol Oceanogr, 27, 1101–1111.CrossRefGoogle Scholar
  30. Smith, R.C. 1989. Ozone, middle ultraviolet radiation and the aquatic environment. Photochem Photobiol, 50, 459–468.CrossRefGoogle Scholar
  31. Soto, D., and Zuñiga, L. 1991. Zooplankton assemblages of Chilean temperate lakes: A comparison with North American counterparts. Rev Chil Hist Nat, 64, 569–581.Google Scholar
  32. Soto, D., Campos, H., Steffen, W., Parra, O., and Zuñiga, L. 1993. A case of potentially N-limited pristine lakes and ponds in Chilean Patagonia. Archiv Hydrobiol, 99, 181–197.Google Scholar
  33. Spencer, G.N., and King, D.L. 1985. Interaction between light, NH4, and CO2 in buoyancy regulation of Anabaena flos-aquae (Cyanophyceae). J Phycol, 22, 194–199.Google Scholar
  34. Stockner, J.G. 1981. Whole lake fertilization for the enhancement of sockeye salmon (Oncorhynchus nerka) in British Columbia, Canada. Verh Internat verein Limnol, 21, 293–299.Google Scholar
  35. Stockner, J.G. 1987. Lake fertilization: The enrichment cycle and lake sockeye salmon (Oncorhynchus nerka) production. In H.D. Smith, L. Margolis, and C.C. Wood (eds.), Sockeye salmon (Oncorhynchus nerka) population biology and future management, (pp. 198–215). Can Spec Publ Fish Aquat Sci, No. 96.Google Scholar
  36. Stockner, J.G., and Costella, A.C. 1980. The paleolimnology of eight sockeye salmon (Oncorhynchus nerka) nursery lakes in British Columbia, Canada. Can Tech Rep Fish Aquat Sci, No. 979.Google Scholar
  37. Stockner, J.G., and Porter, K.G. 1988. Microbial food webs in fresh water planktonic ecosystems. In S.R. Carpenter (ed.), Complex Interactions in Lake Communities, (pp. 71–84). New York: Springer-Verlag.Google Scholar
  38. Stockner, J.G., and Shortreed, K.S. 1985. Whole-lake fertilization experiments in coastal British Columbia Lakes: empirical relationships between nutrient inputs and phytoplankton biomass and production. Can J Fish Aquat Sci, 42, 649–658.CrossRefGoogle Scholar
  39. Stockner, J.G., and Shortreed, K.S. 1988. Response of Anabaena and Synechococcus to manipulation of nitrogen: phosphorus ratios in a lake fertilization experiment. Limnol Oceanogr, 33(6, 1), 1348–1361.CrossRefGoogle Scholar
  40. Stockner, J.G., and Shortreed, K.S. 1989. Algal picoplankton production and contribution to food webs in oligotrophic British Columbia Lakes. Hydrobiologia, 173, 151–166.CrossRefGoogle Scholar
  41. Strickland, J.D.H. 1960. Measuring the production of marine phytoplankton. Bull Fish Res Board Can, No. 122.Google Scholar
  42. Strickland, J.D.H., and Parsons, T.R. 1968. A practical handbook of seawater analysis. Bull Fish Res Board Can, No. 167.Google Scholar
  43. Thomasson, K. 1963. Araucanian lakes. Acta Phytogeographica Sue, 47, 1–139.Google Scholar
  44. Vollenweider, R.A. 1968. Scientific fundamentals of the eutrophication of lakes and flowing waters, with particular reference to Nitrogen and Phosphorus as factors in eutrophication. Paris, Rep Organism Economic Cooperation and Development, DAS/CSI/68.27.Google Scholar
  45. Weisse, T., and Stockner, J.G. 1994. Eutrophication: the role of microbial food webs. Mem Instit Ital Idrobiol (in press).Google Scholar
  46. Williamson, C.E., Zagarese, H.E., Schulze, P.C., Hargreaves, B.R., and Seva, J. 1994. The impact of short-term exposure to UV-B radiation on Zooplankton communities in north temperate lakes. J Plankton Res, 16, 205–218.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag New York, Inc. 1996

Authors and Affiliations

  • Doris Soto
  • John G. Stockner

There are no affiliations available

Personalised recommendations