Skip to main content

Multiple-Scale Expansions for Partial Differential Equations

  • Chapter
Multiple Scale and Singular Perturbation Methods

Part of the book series: Applied Mathematical Sciences ((AMS,volume 114))

Abstract

Multiple-scale and averaging methods have a broad range of applicability for systems of ordinary differential equations, as discussed in Chapters 4 and 5. In contrast, asymptotic solution techniques for partial differential equations are more recent and may be implemented, in general, only with multiple-scale expansions. Some of the early use of multiple scales concerned problems where the unperturbed state has a simple, usually periodic, structure, and the leading effect of weak nonlinearities is to introduce a slow modulation of the parameters. A number of representative examples are discussed in Sec. 6.1. In Sec. 6.2, we study systems of conservation laws that are perturbed about a uniform state. The ideas are illustrated using examples from shallow water flow, gas dynamics, and other applications. The final section, 6.3, gives a brief introduction to multiple-scale homogenization.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. M.J. Ablowitz and H. Segur, Solitons and the Inverse Scattering Method, SIAM, Philadelphia, 1981.

    Google Scholar 

  2. A. Bensoussan, J.-L. Lions, and G. Papanicolaou, Asymptotic analysis for periodic structures, Studies in Mathematics and Its Applications 5, North-Holland, Amsterdam, 1978.

    MATH  Google Scholar 

  3. S.C. Chikwendu, “Non-linear wave propagation solutions by Fourier transform perturbation,” Int. J. Non-linear Mechanics, 16, 1981, pp. 117–128.

    Article  MathSciNet  MATH  Google Scholar 

  4. S.C. Chikwendu, “Asymptotic solutions of some weakly nonlinear elliptic equations,” SIAM J. Appl. Math., 31, 1976, pp. 286–303.

    Article  MathSciNet  MATH  Google Scholar 

  5. S.C. Chikwendu and C.V. Easwaran, “Multiple-scale solution of initial-boundary value problems for weakly nonlinear wave equations on the semi-infinite line,” SIAM J. Appl. Math., 52, 1992, pp. 946–958.

    Article  MathSciNet  MATH  Google Scholar 

  6. S.C. Chikwendu and J. Kevorkian, “A perturbation method for hyperbolic equations with small nonlinearities,” SIAM J. Appl Math., 22, 1972, pp. 235–258.

    Article  MathSciNet  MATH  Google Scholar 

  7. J.D. Cole and L.P. Cook, Transonic Aerodynamics, North-Holland, Amsterdam, 1986.

    MATH  Google Scholar 

  8. P.G. Drazin, Solitons, Cambridge University Press, Cambridge, 1983.

    Book  MATH  Google Scholar 

  9. P.G. Drazin and W.H. Reid, Hydrodynamic Stability, Cambridge University Press, Cambridge, 1991.

    Google Scholar 

  10. W. Eckhaus, “On modulation equations of the Ginzburg-Landau type,” International Conference on Industrial and Applied Mathematics, R.E. O’Malley, Jr., Ed., Society for Industrial and Applied Mathematics, Philadelphia, 1991, pp. 83–98.

    Google Scholar 

  11. W. Eckhaus, “New approach to the asymptotic theory of nonlinear oscillations and wave-propagation,” J. Math. Anal. Appl., 49, 1975, pp. 575–611.

    Article  MathSciNet  MATH  Google Scholar 

  12. W. Eckhaus, Studies in Nonlinear Stability Theory, Springer Tracts in Natural Philosophy, vol. 6, Springer-Verlag, Berlin, 1965.

    Google Scholar 

  13. C.L. Frenzen and J. Kevorkian, “A review of multiple scale and reductive perturbation methods for deriving uncoupled evolution equations,” Wave Motion, 7, 1985, pp. 25–42.

    Article  MathSciNet  MATH  Google Scholar 

  14. CS. Gardner, J.M. Greene, M.D. Kruskal, and R.M. Miura, “Method for solving the Korteweg-de Vries equation,” Phys. Rev. Lett., 19, 1967, pp. 1095–1097.

    Article  MATH  Google Scholar 

  15. J.B. Keller, D’Arcy’s law for flow in porous media and the two-space method, Nonlinear Partial Differential Equations in Engineering and Applied Sciences, R.L. Sternberg, A.J. Kalmowski, and J.S. Papadokis, Eds., Marcel Dekker, New York, 1980.

    Google Scholar 

  16. J.B. Keller and S. Kogelman, “Asymptotic solutions of initial value problems for nonlinear partial differential equations,” SIAM J. Appl. Math., 18, 1970, pp. 748–758.

    Article  MathSciNet  MATH  Google Scholar 

  17. J. Kevorkian, Partial Differential Equations: Analytical Solution Techniques, Chapman and Hall, New York, London, 1990, 1993.

    MATH  Google Scholar 

  18. J. Kevorkian and J.D. Cole, Perturbation Methods in Applied Mathematics, Springer-Verlag, New York, 1981.

    MATH  Google Scholar 

  19. J. Kevorkian and J. Yu, “Passage through the critical Froude number for shallow water waves over a variable bottom,” J. Fluid Mech., 204, 1989, pp. 31–56.

    Article  MathSciNet  MATH  Google Scholar 

  20. J. Kevorkian, J. Yu, and L. Wang, “Weakly nonlinear waves for a class of linearly unstable hyperbolic conservation laws with source terms,” SIAM J. Appl. Math., 55, 1995, pp. 446–484.

    Article  MathSciNet  MATH  Google Scholar 

  21. R.W Lardner, “Asymptotic solutions of nonlinear wave equations using the methods of averaging and two-timing,” Q. Appl. Math., 35, 1977, pp. 225–238.

    MathSciNet  MATH  Google Scholar 

  22. J.C. Luke, “A perturbation method for nonlinear dispersive wave problems,” Proc. Royal Soc. London A, 292, 1966, pp. 403–412.

    Article  MathSciNet  MATH  Google Scholar 

  23. A. Majda and R. Rosales, “Resonantly interacting weakly nonlinear hyperbolic waves, I. A single space variable,” Stud. Appl. Math., 71, 1984, pp. 149–179.

    MathSciNet  MATH  Google Scholar 

  24. B.J. Matkowsky, “A simple nonlinear dynamic stability problem,” Bull. Am. Math. Soc, 76, 1970, pp. 620–625.

    Article  MathSciNet  MATH  Google Scholar 

  25. G. Pechuzal and J. Kevorkian, “Supersonic-transonic flow generated by a thin airfoil in a stratified atmosphere,” SIAM J. Appl. Math., 33, 1977, pp. 8–33.

    Article  MathSciNet  MATH  Google Scholar 

  26. R. Srinivasan, “Asymptotic solution of the weakly nonlinear Schrödinger equation with variable coefficients,” Stud. Appl. Math., 84, 1991, pp. 145–165.

    MathSciNet  MATH  Google Scholar 

  27. G.B. Whitham, Linear and Nonlinear Waves, Wiley, New York, 1974.

    Google Scholar 

  28. G.B. Whitham, “A general approach to linear and nonlinear dispersive waves,” J. Fluid Mech., 22, 1965, pp. 273–283.

    Article  MathSciNet  Google Scholar 

  29. J. Yu and J. Kevorkian, “The interaction of a strong bore with small disturbances in shallow water,” Stud. Appl. Math., 91, 1994, pp. 247–273.

    MathSciNet  MATH  Google Scholar 

  30. J. Yu and J. Kevorkian, “Nonlinear evolution of small disturbances into roll waves in an inclined open channel,” J. Fluid Mech., 243, 1992, pp. 575–594.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Springer-Verlag New York, Inc.

About this chapter

Cite this chapter

Kevorkian, J., Cole, J.D. (1996). Multiple-Scale Expansions for Partial Differential Equations. In: Multiple Scale and Singular Perturbation Methods. Applied Mathematical Sciences, vol 114. Springer, New York, NY. https://doi.org/10.1007/978-1-4612-3968-0_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-3968-0_6

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4612-8452-9

  • Online ISBN: 978-1-4612-3968-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics