Skip to main content

The Method of Multiple Scales for Ordinary Differential Equations

  • Chapter
Book cover Multiple Scale and Singular Perturbation Methods

Part of the book series: Applied Mathematical Sciences ((AMS,volume 114))

Abstract

Various physical problems are characterized by the presence of a small disturbance which, because it is active over a long time, has a non-negligible cumulative effect. For example, the effect of a small damping force over many periods of oscillation is to produce a decay in the amplitude of an oscillator. A more interesting example having the same physical and mathematical features is that of the motion of a satellite around Earth. Here the dominant force is a spherically symmetric gravitational field. If this were the only force acting on the satellite, the motion would be periodic (for sufficiently low energies). The presence of a thin atmosphere, a slightly nonspherical Earth, a small moon, a distant sun, and so on, all produce small but cumulative effects which, after a sufficient number of orbits, drastically alter the nature of the motion.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. D.L. Bosley and J. Kevorkian, “On the asymptotic solution of non-Hamiltonian systems exhibiting sustained resonance,” Stud. Appl. Math., 98, 1995, pp. 83–130.

    MathSciNet  Google Scholar 

  2. F.J. Bourland and R. Haberman, “The modulated phase shift for strongly nonlinear slowly varying, and weakly damped oscillators,” SIAM J. Appl. Math., 48, 1988, pp. 737–748.

    Article  MathSciNet  MATH  Google Scholar 

  3. P.F. Byrd and M.D. Friedman, Handbook of Elliptic Integrals for Engineers and Scientists, 2nd edition, Spring-Verlag, New York, 1971.

    MATH  Google Scholar 

  4. J. Cochran, A new approach to singular perturbation problems, Ph.D. Thesis, Stanford University, Stanford, CA, 1962.

    Google Scholar 

  5. J.D. Cole and J. Kevorkian, “Uniformly valid asymptotic approximations for certain non-linear differential equations,” Proc. Internat. Sympos. Non-linear Differential Equations and Non-linear Mechanics., Academic Press, New York, 1963, pp. 113–120.

    Google Scholar 

  6. G. Contopoulos, “A third integral of motion in a galaxy,” Z. Astrophys., 49, 1960, p. 273.

    MathSciNet  MATH  Google Scholar 

  7. M.C. Eckstein and Y.Y. Shi, “Asymptotic solutions for orbital resonances due to the general geopotential,” Astron. J., 74, 1969, pp. 551–562.

    Article  Google Scholar 

  8. M.C. Eckstein, Y.Y. Shi, and J. Kevorkian, “Satellite motion for all inclinations around an oblate planet,” Proceedings of Symposium No. 25, International Astronomical Union, Academic Press, New York, 1966, pp. 291–332.

    Google Scholar 

  9. M.C. Eckstein, Y.Y. Shi, and J. Kevorkian, “Satellite motion for arbitrary eccentricity and inclination around the smaller primary in the restricted three-body problem,” Astron. J., 71, 1966, pp. 248–263.

    Article  Google Scholar 

  10. M.C. Eckstein, Y.Y. Shi, and J. Kevorkian, “Use of the energy integral to evaluate higher-order terms in the time history of satellite motion,” Astron. J., 71, 1966, pp. 301–305.

    Article  Google Scholar 

  11. A. Erdelyi, Asymptotic Expansions, Dover Publications, New York, 1956.

    MATH  Google Scholar 

  12. B. Erdi, “The three-dimensional motion of trojan asteroids,” Celest. Mech., 18, 1978, pp. 141–161.

    Article  MATH  Google Scholar 

  13. G.I. Hori, “Nonlinear coupling of two harmonic oscillations,” Publ. Astron. Soc. Jpn., 19, 1967, pp. 229–241.

    Google Scholar 

  14. H. Kabakow, A perturbation procedure for nonlinear oscillations, Ph.D. Thesis, California Institute of Technology, Pasadena, CA, 1968.

    Google Scholar 

  15. J. Kevorkian, “Perturbation techniques for oscillatory systems with slowly varying coefficients,” SIAM Rev., 29, 1987, pp. 391–461.

    Article  MathSciNet  MATH  Google Scholar 

  16. J. Kevorkian, “Resonance in weakly nonlinear systems with slowly varying parameters,” Stud. Appl. Math., 62, 1980, pp. 23–67.

    MathSciNet  MATH  Google Scholar 

  17. J. Kevorkian, “The planar motion of a trojan asteroid,” Periodic Orbits, Stability, and Resonances, G.E.O. Giacaglia (Editor), D. Reidel Publishing Company, Dordrecht, 1970, pp. 283–303.

    Google Scholar 

  18. J. Kevorkian, “The two variable expansion procedure for the approximate solution of certain nonlinear differential equation,” Lectures in Applied Mathematics, Vol. 7, Space Mathematics (J.B. Rosser, Ed.), American Mathematical Society, 1966, pp. 206–275.

    Google Scholar 

  19. J. Kevorkian, The uniformly valid asymptotic representation of the solutions of certain non-linear ordinary differential equations, Ph.D. Thesis, California Institute of Technology, Pasadena, CA, 1961.

    Google Scholar 

  20. J. Kevorkian and Y.P. Li, “Explicit approximations for strictly nonlinear oscillators with slowly varying parameters with applications to free-electron lasers,” Stud. Appl. Math., 78, 1988, pp. 111–165.

    MathSciNet  MATH  Google Scholar 

  21. N.M. Krylov and N.N. Bogoliubov, Introduction to Nonlinear Mechanics, Princeton University Press, Princeton, 1957.

    Google Scholar 

  22. G.N. Kuzmak, “Asymptotic solutions of non-linear second order differential equations with variable coefficients,” Prikl. Math. Mech., 23, 1959, pp. 515–526. Also appears in English translation.

    MathSciNet  Google Scholar 

  23. P.-S. Laplace, Mécanique Céleste, Translated by Nathaniel Bowditch, Vol. 1, Book II, Chap. 15, p. 517, Hillard, Gray, Little, and Wilkins, Boston, 1829.

    Google Scholar 

  24. W. Lick, “Two-variable expansions and singular perturbation problems,” SIAM J. Appl Math., 17, 1969, pp. 815–825.

    Article  MathSciNet  MATH  Google Scholar 

  25. J.C. Luke, “A perturbation method for nonlinear dispersive wave problems,” Proc. R. Soc. London, Ser. A, 292, 1966, pp. 403–412.

    Article  MathSciNet  MATH  Google Scholar 

  26. J.J. Mahoney, “An expansion method for singular perturbation problems,” J. Australian Math. Soc, 2, 1962, pp. 440–463.

    Article  Google Scholar 

  27. J.A. Morrison, “Comparison of the modified method of averaging and the two variable expansion procedure,” SIAM Rev., 8, 1966, pp. 66–85.

    Article  MathSciNet  MATH  Google Scholar 

  28. H. Poincaré, Les Methodes Nouvelles de la Mécanique Celeste, Vol. II, Dover, New York, 1957.

    Google Scholar 

  29. Lord Rayleigh, Theory of Sound, 2 Edition, Dover, New York, 1945.

    MATH  Google Scholar 

  30. G. Sandri, “A new method of expansion in mathematical physics,” Nuovo Cimento, B36, 1965, pp. 67–93.

    MathSciNet  Google Scholar 

  31. G.G. Stokes, “On the Theory of Oscillatory Waves,” Cambridge Trans., 8, 1847, pp. 441–473.

    Google Scholar 

  32. R. A. Struble, “A geometrical derivation of the satellite equation,” J. Math. Anal. Appl., 1, 1960, p. 300.

    Article  MathSciNet  MATH  Google Scholar 

  33. M. Van Dyke, Perturbation Methods in Fluid Mechanics, Annotated Edition, Parabolic Press, Stanford, CA, 1975.

    MATH  Google Scholar 

  34. G.B. Whitham, “Two-timing, variational principles and waves,” J. Fluid Mech., 44, 1970, pp. 373–395.

    Article  MathSciNet  MATH  Google Scholar 

  35. E.T. Whittaker, Analytical Dynamics, Cambridge University Press, London and New York, 1904.

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Springer-Verlag New York, Inc.

About this chapter

Cite this chapter

Kevorkian, J., Cole, J.D. (1996). The Method of Multiple Scales for Ordinary Differential Equations. In: Multiple Scale and Singular Perturbation Methods. Applied Mathematical Sciences, vol 114. Springer, New York, NY. https://doi.org/10.1007/978-1-4612-3968-0_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-3968-0_4

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4612-8452-9

  • Online ISBN: 978-1-4612-3968-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics