Skip to main content

Part of the book series: Pathology and Laboratory Medicine ((PLM,volume 2))

  • 81 Accesses

Abstract

The pancreas is an organ that lies parallel to and beneath the stomach and that is a major contributor to the overall digestive process. The pancreas has both endocrine and exocrine functions. The exocrine portion of the pancreas consists of clusters of cells known as acini that make up lobules separated by connective tissue. These cells constitute almost 80% of the organ. An acinus consists of up to 50 cells that have a common orientation toward a central lumen. Each acinus is drained by a ductule.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Owyang C, Williams (1991) Pancreatic secretion. In: Textbook of gastroenterology, Yamada T, ed., Philadelphia, PA, J.B. Lippincott, pp. 294–314.

    Google Scholar 

  2. Fahrenkrug J, Schaffalitzky OB, Rune SJ (1978) pH threshold for release of secretin in normal subjects and in patients with duodenal ulcer and patients with chronic pancreatitis. Scand J Gastroenterol 13:177–183.

    Google Scholar 

  3. Beglinger C, Fried M, Whitehouse I (1984) Pancreatic enzyme responses to a liquid meal and to hormonal stimulation. J Clin Invest 75:1471–1474.

    Google Scholar 

  4. Guyton AC (1986) Textbook of medical physiology, Philadelphia, PA: W.B. Saunders, p. 777.

    Google Scholar 

  5. Lowe ME (1994) The structure and function of pancreatic enzymes. In: Physiology of the gastrointestinal tract, 3rd ed, Johnson LR, ed. New York: Raven, pp. 1531–1542.

    Google Scholar 

  6. Rovery M (1988) Limited proteolyses in pancreatic chymotrypsinogens and trypsinogens. Biochimie 70:1131–1135.

    PubMed  CAS  Google Scholar 

  7. Owyang C, Louie DS, Tatum D (1986) Feedback regulation of pancreatic enzyme secretion in man: suppression of cholecystokinin release by trypsin. J Clin Invest 77: 2042–2047.

    PubMed  CAS  Google Scholar 

  8. Rinderknecht H (1986) Activation of pancreatic zynogens. Dig Dis Sci 31:314–321.

    PubMed  CAS  Google Scholar 

  9. Travis J, Salvesen GS (1983) Human plasma proteinase inhibitors. Annu Rev Biochem 52:655–709.

    PubMed  CAS  Google Scholar 

  10. Alberts B, Bray D, Lewis J, Raff M, Roberts K, Watson JD (1989) Molecular biology of the cell, 2nd ed., New York: Garland, p. 411.

    Google Scholar 

  11. Guy O, Lombardo D, Bartalt D, Amic J, Figarella C (1978) Two human trypsinogens. Purification, molecular properties and N-terminal sequences. Biochemistry 9:1669–1679.

    Google Scholar 

  12. Itkonen O, Koivunan E, Hurme M, Alfthan H, Schroder T, Stenman U-H (1990) Time-resolved immunofluorometric assays for trypsinogen-1 and -2 in serum reveal preferential elevations of trypsinogen-2 in pancreatitis. J Lab Clin Med 115:712–718.

    PubMed  CAS  Google Scholar 

  13. Figarella F, Amouric M, Carrere J, Miszczuk-Jamska B, Guy-Crotte O (1984) Pancreatic proteins in normal state and pancreatic diseases in pancreatic juice and blood. Ric Clin Lab 14:349–359.

    PubMed  CAS  Google Scholar 

  14. Emi M, Nakamura Y, Ogawa M (1986) Cloning, characterization and nucleotide sequences of two с DNAs encoding pancreatic trypsinogens. Gene 41:305–310.

    PubMed  CAS  Google Scholar 

  15. Craik CS, Roczniak S, Largman C, Rutter WJ (1987) The catalytic role of the active site aspartic acid in serine proteases. Science 237:909–913.

    PubMed  CAS  Google Scholar 

  16. Graf L, Craik CS, Patthy A, Roczniak S, Fletterick RJ, Rutter WJ (1987) Selective alteration of substrate specificity by replacement of aspartate A with lysine in the binding pocket of trypsin. Biochemistry 26:2616–2623.

    PubMed  CAS  Google Scholar 

  17. Craik CS, Largman C, Fletcher T, Roczniak S, Barr PJ, Fletteride R, Rutter WJ (1985) Redesigning trypsin: alteration of substrate specificity. Science 228:291–297.

    PubMed  CAS  Google Scholar 

  18. DeCaro A, Figarella C, Guy O (1975) the two human chymotrypsinogens. Purification and characterization. Biochem Biophys Acta 379:431–441.

    PubMed  Google Scholar 

  19. Fletcher TS, Wei-Fang S, Largman C (1987) Primary structure of human pancreatic elastase 2 determined by sequence analysis of the cloned mRNA. Biochemistry 26: 7256–7261.

    PubMed  Google Scholar 

  20. Janoff A (1985) Elastase in tissue injury. Ann Rev Med 36:207–216.

    PubMed  CAS  Google Scholar 

  21. Christianson DW, Lipscomb WN (1986) X-ray crystallographic investigation of substrate binding of carboxypeptidase A at subzero temperature. Biochemistry 83:7568–7572.

    CAS  Google Scholar 

  22. Pascual R, Burgos FJ, Salva M, Soriano F, Mendez E, Aviles FX (1989) Purification and properties of five different forms of human procarboxypeptidases. Eur J Biochem 179: 609–616.

    PubMed  CAS  Google Scholar 

  23. Terashima H, Atomic Y, Ohnistic N (1989) Characterization of human pancreatic kallikrein. Adv Exp Med Biol 247B:177–182.

    PubMed  CAS  Google Scholar 

  24. Seigner C, Prodanov E, Marchis-Mouren G (1987) The determination of substrate binding energies of porcine pancreatic ос-amylase by comparing hydrolytic activity towards substrates. Biochem Biophys Acta 913:20–209.

    Google Scholar 

  25. Winkler FK, D’Arcy A, Hunziker W (1990) Structure of human pancreatic lipase. Nature 343:771–774.

    PubMed  CAS  Google Scholar 

  26. Erlanson-Albertsson C (1992) Pancreatic colipase-structural and physiological aspects. Biochem Biophys Acta 1125:1–7.

    PubMed  CAS  Google Scholar 

  27. Reue K, Zambaux J, Wong H. et al. (1991) cDNA cloning of carboxyl ester lipase from human pancreas reveals a unique proline-rich repeat unit. J Lipid Res 32:267–276.

    PubMed  Google Scholar 

  28. Gelb MH, Jain MK, Hanel AM, Berg OG (1994) Interfacial enzymology of glycerolipid hydrolases: Lessons from secreted phospholipases A2. Annu Rev Biochem 64:653–688.

    Google Scholar 

  29. van den Berg B, Tessari M, de Haas GH, Verheis HM, Boelens R, Kaptein R (1995) Solution structure of procine pancreatic phospholipase A2. EMBO J 14:4123–4131.

    PubMed  Google Scholar 

  30. Nevalainen TJ (1993) Serum phospholipase A2 in inflammatory disease. Clin Chem 39: 2453–2459.

    PubMed  CAS  Google Scholar 

  31. Weickmann JL, Elson M, Glitz DG (1981) Purification and characterization of human pancreatic ribonuclease. Biochemistry 20:1272–1278.

    PubMed  CAS  Google Scholar 

  32. Celinski A, Naskalski JW, Sanajd J, Nowacki G (1990) Poly-C avid ribonuclease, but not RNA-avid ribonuclease increases in serum of patients with acute pancreatitis [Abstract]. Clin Chem 36:1143.

    Google Scholar 

  33. Naskalski JW, Sznajd J, Popiela T, Kedra B, Krzemien D (1990) Poly-C ribonuclease in detection of acute necrotizing pancreatitis [Abstract]. Clin Chem 36:114.

    Google Scholar 

  34. Green JA, Barkin JS (1994) The exocrine pancreas. Curr Gastroenterol 14:115–153.

    Google Scholar 

  35. Lankisch PG (1993) Function tests in the diagnosis of chronic pancreatitis. Int J Pancreatol 14:9–20.

    PubMed  CAS  Google Scholar 

  36. Skude G (1977) On human amylase isoenzymes. Scand J Gastroenterol; Suppl 44:1–37.

    CAS  Google Scholar 

  37. Berk JE, Ayulo JA, Fridhandler L (1979) Value of pancreatic-type isoamylase assay as an index of pancreatic insufficiency. Dig Dis Sci 24:6–10.

    PubMed  CAS  Google Scholar 

  38. Fahrenkrug J, Magid E (1980) Concentration of immunoreactive trypsin and activity of pancreatic isoamylase in serum compared in pancreatic disease. Clin Chem 26:1573–1576.

    PubMed  CAS  Google Scholar 

  39. Bank S (1992) P amylase is always greater than S in spot urine of normal subjects: diagnostic implications. Int J Pancreatol 11:191–194.

    PubMed  CAS  Google Scholar 

  40. Lott JA, Patel ST, Sawhney AK, Kazmierczak SC, Love JE Assays of serum lipase: analytical and clinical considerations. Clin Chem 32:129–1302.

    Google Scholar 

  41. Gumaste V, Dave P, Sereny G (1992) Serum lipase: a better test to diagnose acute alcoholic pancreatitis. Am J Med 92:239–242.

    PubMed  CAS  Google Scholar 

  42. Fabris C, Basso D, Panozzo MP, Del Favero G, Maggiato T, Plebani M, Ferrara C, Fogar P, Zaninotto M, Naccarato R (1992) Urinary phospholipase A2 excretion in chronic pancreatic diseases. Int J Pancreatol 11:179–184.

    PubMed  CAS  Google Scholar 

  43. Brown KS, Kingsbury WD, Hall NM, Dunn GL, Gilvarg C (1987) Determination of car-boxypeptidase A using N-Acetyl-phenylalanyl-3–thiaphenylalanine as substrate: application to a direct serum assay. Anal Biochem 161:219–225.

    PubMed  CAS  Google Scholar 

  44. Kazmierczak SC, Van Lente F (1989) Measuring carboxypeptidase A activity with a centrifugal analyzer: analytical and clinical considerations. Clin Chem 35:251–255.

    PubMed  CAS  Google Scholar 

  45. Goldberg DM (1983) Enzymes and isoenzymes in the evaluation of diseases of the pancreas. In: Clinical and analytical concepts in enzymology, Homburger HA, ed., Skokie, IL: College of American Pathologists; pp. 31–56.

    Google Scholar 

  46. Kimland M, Russick C, Marks WH, Bortstrom A (1989) Immunoreactive anionic and cationic trypsin in human serum. Clin Chim Acta 184:31–46.

    PubMed  CAS  Google Scholar 

  47. Anriulli A, Masoero G, Felder M, Vantini I, Petrillo M, Caballini G, Bianchi PG, Dobrilla G, Verme G (1981) Circulating trypsin-like immunoreactivity in chronic pancreatitis. Dig Dis Sci 26:532–537.

    Google Scholar 

  48. Steinberg WM, Goldstein SS, David ND, Anderson KK, Shammala JM (1985) Predictive value of a low serum trypsinogen. Dig Dis Sci 30:547–551.

    PubMed  CAS  Google Scholar 

  49. Durie PR, Forstner GG, Gaskin KJ, Moore DJ, Cleghorn GJ, Wong SS, Corey ML (1986) Age-related alterations of immunoreactive pancreatic cationic trypsinogen in sera from cystic fibrosis patients with and without pancreatic insufficiency. Pediatr Res 20:209–213.

    PubMed  CAS  Google Scholar 

  50. Rinderknecht H, Renner IG, Carmack C (1978) Trypsinogen variants in pancreatic juice of healthy volunteers, chronic alcoholics and patients with pancreatitis and cancer of the pancreas. Gut 20:886–891.

    Google Scholar 

  51. Borgstrom A, Ohlsson K (1976) Radioimmunological determination and characterization of cathodal trypsin-like immunoreactivity in normal human plasma. Scand J Clin Lab Invest 36:809–814.

    PubMed  CAS  Google Scholar 

  52. Hedstrom J, Leinoner J, Sainio V, Senmon U-H (1994) time-resolved immunofluorometric assay of trypsin-2 complexed with alpha-1–antitrypsin in serum. Clin Chem 40: 1761–1765.

    Google Scholar 

  53. Koehn HD, Mostbeck A (1981) Age-dependence of immunoreactive trypsin concentrations in serum [Letter]. Clin Chem 27:502.

    PubMed  CAS  Google Scholar 

  54. Moffat A, Marks V, Gamble DR (1980) Serum immunoreactive trypsin concentrations in diabetic children. J Clin Pathol 33:871–975.

    PubMed  CAS  Google Scholar 

  55. Andriulli A, Masoero G, Fico D, Zayo P, Marchetto M (1986) Evocative test of serum pancreatic enzymes to bombesin in chronic pancreatitis. Am J Gastroenterol 81:562–565.

    PubMed  CAS  Google Scholar 

  56. Lankisch PG, Marthey G, Otto J, Koop H, Talawicar M, Willins B (1982) Exocrine pancreatic function in diabetes mellitus. Digestion 25:211–216.

    PubMed  CAS  Google Scholar 

  57. Moss DW, Henderson AR (1994) Enzymes. In: Tietz textbook of clinical chemistry, 2nd ed., Burtis CA, Ashwood ER, eds., Philadelphia, PA: W.B. Saunders; pp. 871–876.

    Google Scholar 

  58. Lawson N, Chesner I (1994) Tests of exocrine pancreatic function. Ann Clin Biochem 31:305–314.

    PubMed  Google Scholar 

  59. Lesi C, Melzi D’Eril DV, Scotta MS, Zonil, Malagniti P (1988) A new fecal chymotrypsin method for evaluating the exocrine pancreatic function in different pancreatic diseases. Int J Pancreatol 203–208.

    Google Scholar 

  60. Durr HK, Otte M, Forrell MM, Bode JC (1978) Fecal chymotrypsin: a study on its diagnostic value by comparison with the secretin-cholecystokinin test. Dig 404–409.

    Google Scholar 

  61. Gutierrez LV, Baron JH (1972) A comparison of Boots and GIH secretin as stimuli of pancreatic secretion in human subjects with or without chronic pancreatitis. Gut 13: 721–725.

    PubMed  CAS  Google Scholar 

  62. Gullo L, Pezzilli R, Ventrucci M, Barbara L (1990) Caerulein induced plasma amino acid decrease: a simple, sensitive, and specific test of pancreatic function. Gut 31: 926–929.

    PubMed  CAS  Google Scholar 

  63. Durr GH-K (1984) The secretin-pancreozymin (caerulin)-test. Methodological problems. In: Pancreatities—concepts and classification, Gyr KE, Singer MX, Sorles H, eds., Amsterdam: Excerpta Medica, pp. 261–266.

    Google Scholar 

  64. Otte M (1979) Pankreasfunktionsdiagnostik. Internist 20:331–340.

    PubMed  CAS  Google Scholar 

  65. Heij HA, Obertop H, van Blankenstein M, Nix GAJJ, Westbroek DL (1987) Comparison on endoscopic retrograde pancreatography with functional and histological changes in chronic pancreatitis. Acta Radiol 28:289–293.

    PubMed  CAS  Google Scholar 

  66. Lankisch PG (1981) Exocrine pancreatic function tests. Gut 23:777–798.

    Google Scholar 

  67. Henderson AR, Tietz NW, Rinker MS (1994) Gastric, pancreatic, and intestinal function. In: Tietz textbook of clinical chemistry, 2nd ed., Burtis CA, Ashwood ER, eds., Philadelphia, PA: WB Saunders; pp. 1604–1616.

    Google Scholar 

  68. Hoek FJ (1988) The PABA test for evaluation of exocrine pancreatic function: a review of the literature. Neth J Med 32:143–156.

    PubMed  CAS  Google Scholar 

  69. Scharpe S, Iliano L (1987) Two indirect tests of exocrine pancreatic function evaluated. Clin Chem 33:5–12.

    PubMed  CAS  Google Scholar 

  70. Mitchell CJ, Humphrey CS, Bullen AW, Kelleher J, Losowsky MS (1979) Improved diagnostic accuracy of a modified oral pancreatic function test. Scand J Gastroenterol 14:737–741.

    PubMed  CAS  Google Scholar 

  71. Berg JD, Chesner IM, Allen-Narker RA, Buckley BM, Lawson N (1986) Exocrine pancreatic function as determined in a same day test with use of bentiromide and p-aminosalicylic acid. Clin Chem 32:101–1012.

    Google Scholar 

  72. Lang C, Gyr K, Tonko I, Conen D, Stadler GA (1984) Value of serum PABA as a pancreatic function test. Gut 408–512.

    Google Scholar 

  73. Tanner AR, Robinson DP (1988) Pancreatic function testing: serum PABA measurement is a reliable and accurate measurement of exocrine function. Gut 29:1736–1740.

    PubMed  CAS  Google Scholar 

  74. Lankisch PG, Brauneis J, Otto J, Goke B (1986) Pancreolauryl and NBT-PABA tests. Are serum tests more practical alternatives to urine tests in the diagnosis of exocrine pancreatic insufficiency? Gastroenterology 90:35–354.

    Google Scholar 

  75. Weizman Z, Forstner G, Gaskin K, Kopelman H, Wong S, Durie P (1985) Bentiromide test for assessing pancreatic dysfunction using analysis of p-aminobenzoic acid in plasma and urine. Gastroenterology 89:596–604.

    PubMed  CAS  Google Scholar 

  76. Libeer JC, Scharpe SL, Verkerk RM, Deprettere AJ, Schepens PJ (1981) Simultaneous determination of p-aminobenzoic acid, acetyl-p-aminobenzoic acid and p-aminohippuric acid in serum and urine by capillary gas chromatography with use of a nitrogen-phosphorus detector. Clin Chim Acta 115:119–123.

    PubMed  CAS  Google Scholar 

  77. Lawson N, Berg JD, Chesner I (1985) Liquid-chromatographic determination of p-aminobenzoic acid in plasma to evaluate exocrine pancreatic function. Clin Chem 31: 1073–1075.

    PubMed  CAS  Google Scholar 

  78. Cavallini G, Piubello W, Brocco G, Micciolo R, Chech G, Angelini G, Venini L, Riela A, Dalle Molle L, Vartini I, Scuro LA (1985) Serum PABA and fluorescein in the course of PABA and pancreolauryl test as an index of exocrine pancreatic insufficiency. Dig Dis Sci 30:655–663.

    PubMed  CAS  Google Scholar 

  79. Malfertheiner P, Buchler M, Muller A, Ditschuneit H (1987) Fluorescein dilaurate serum test: a rapid, tubeless pancreatic function test. Pancreas 2:53–60.

    PubMed  CAS  Google Scholar 

  80. Malfertheiner P, Bucher M, Muller A, Ditschuneit H (1987) Fluorescein dilaurate-serum test nach metoclopramid-und. sekretinstimulation zur pankreasfunktionsprufung. Beitrag zur diagnose der chronischen pankreatis. Z Gastroenterol 25:225–232.

    Google Scholar 

  81. Domeschke S, Heptner G, Kolb S, Sailer D, Schneider MU, Domschke W (1986) Decrease in plasma amino acid level after secretin and pancreozymin as an indictor of exocrine pancreatic function. Gastroenterology 90:1031–1038.

    Google Scholar 

  82. Gullo L, Pezzili R, Ventrucci M, Barbara L (1990) Caerulein induced plasma amino acid decrease: a simple, sensitive, and specific test of pancreatic function. Gut 31:926–929.

    PubMed  CAS  Google Scholar 

  83. Gilinsky NH (1989) Pancreatic function testing. Postgrad Med 86:165–172.

    PubMed  CAS  Google Scholar 

  84. Benini L, Senro LA, Menini E (1984) Is the 14C-triolein breath test useful in the assessment of malabsorption in clinical practice? Digestion 29:91–97.

    PubMed  CAS  Google Scholar 

  85. Van trappen GR, Rutgeerts PJ, Ghoos YF, Hiele MI (1989) Mixed triglyceride breath test: a non-invasive test of pancreatic lipase activity in the duodenum. Gastroenterology 96:1126–1134.

    Google Scholar 

  86. Kato H, Nakao A, Kishimoto W, Nanami T, Harada A, Hayakawa T, Takagi H (1993) 13C-labeled trioctanoin breath test for exocrine pancreatic function-test in patients after pancratoduodenectomy. Am J Gastroenterol 88:64–69.

    PubMed  Google Scholar 

  87. Cole SG, Rossi S, Stern A, Hofmann AF (1987) Cholesterol octanoate breath test. Preliminary studies on a new noninvasive test of human pancreatic exocrine function. Gastroenterology 93: 1372–1380.

    PubMed  CAS  Google Scholar 

  88. Chen WL, Morishita R, Eguchi T, Kawai T, Sakai M, Tateishi H, Uchino H (1989) Clinical usefulness of dual-label schilling test for pancreatic exocrine function. Gastroenterology 96:1337–1345.

    PubMed  CAS  Google Scholar 

  89. Leung JWC, Frost RA, Burgess K, Braganza JM, Slater DM, Cotton PB (1988) Modified dual label Schilling test for pancreatic exocrine function. Clin Chim Acta 174:93–100.

    PubMed  CAS  Google Scholar 

  90. Lee MJ, Crook T, Noel C, Levinson, UM (1994) Detergent extraction and enzymatic analysis for fecal long-chain fatty acids, triglycerides and cholesterol. Clin Chem 40:223–2234.

    Google Scholar 

  91. Simko V (1981) Fecal fat microscopy: acceptable predictive value in screening for steatorrhea. Am J Gastroetnerol 75:204–208.

    CAS  Google Scholar 

  92. Pedersen NT, Halgreen H (1985) Simultaneous assessment of fat maldigestion and fat malabsorption by a double isotope method using fecal radioactivity. Gastroenterology 88:47–54.

    CAS  Google Scholar 

  93. Koumantakis G, Radcliff FJ (1987) Estimating fat in feces by near-infrared reflectance spectroscopy. Clin Chem 33:502–506.

    PubMed  CAS  Google Scholar 

  94. Schneider MV, Demling L, Jones SA, Barker PJ, Domschke S, Heptner G, Domschke W (1987) NMR spectroscopy. A new method for total stool fat quantification in chronic pancreatitis. Dig Dis Sci 32:494–499.

    PubMed  CAS  Google Scholar 

  95. Li Y, Chiverton SG, Hunt, RH (1989) Exocrine pancreatic function tests. J Clin Gastroenterol 376–378.

    Google Scholar 

  96. Bai JC, Andrush A, Matelo G, Martinez C, Vazquez H, Boerr L, Sambuelli A (1989) Fecal fat concentration in the differential diagnosis of steatorrhea. Am J Gastroenterol 84:27–30.

    PubMed  CAS  Google Scholar 

  97. Roberts IM, Poturich C, Wald A (1986) Utility of fecal fat concentrations as screening test in pancreatic insufficiency. Dig Dis Sci 31:1021–1024.

    PubMed  CAS  Google Scholar 

  98. Fine KD, Fordtran JS (1992) The effect of diarrhea on fecal fat excretion. Gastroenterology 102:1936–1939.

    PubMed  CAS  Google Scholar 

  99. The LB, Stopard M, Anderson S, Grant A, Quantrill D, Wilkinson RH, Jewell DP (1983) Assessment of fat malabsorption. J Clin Pathol 36:1362–1366.

    Google Scholar 

  100. Heeley AF, Watson D (1983) Cystic Fibrosis—Its biochemical detection. Clin Chem 29:2011–2018.

    PubMed  CAS  Google Scholar 

  101. Sierra TJ, Collins FS (1993) The molecular biology of cystic fibrosis. Annu Rev Med 133–144.

    Google Scholar 

  102. Boat TF, Welsh MJ, Baendet AL (1989) Cystic fibrosis. In: The Metabolic Basis of Inherited Disease, 6th ed., Scriver CR, et al. eds., New York: McGraw-Hill, pp. 2649–2680.

    Google Scholar 

  103. Welsh MJ (1990) Abnormal regulation of ion channels in cystic fibrosis epithelia. FASEB J 4:2781–2725.

    Google Scholar 

  104. Rommens JM, Iannuzzi MC, Karem B, Drumm ML, Melmer G, Dean M, Rozmahel R, Cole JL, Kennedy D, Hidaka N, Zsiga M, Buchwald M, Riordan JR, Tsui L, Collins FS (1989) Identification of the cystic fibrosis gene: chromosome walking and jumping. Science 245:1059–1065.

    PubMed  CAS  Google Scholar 

  105. Zielenski J, Rozmahel R, Bozon D, Karem B, Grzelczak Z (1991) Genomic DNA sequence of the cystic fibrosis transmembrane conductance regulator (CFTR) gene. Genomics 10:214–228.

    PubMed  CAS  Google Scholar 

  106. Riordan JR, Rommens JM, Kerem B, Alon N, Rozmahel R, Grzelczak Z, Zielenski J, Lok S, Plavsic N, Chou J, Drumm ML, Iannuzzi MC, Collins FS, Rsui L (1989) Identification of the cystic fibrosis gene: cloning and characterization of complementary DNA. Science 245:1066–1073.

    PubMed  CAS  Google Scholar 

  107. Trezise AEO, Buchwald M (1991) In vivo cell-specific expression of the cystic fibrosis transmembrane conductance regulator. Nature 353:434–437.

    PubMed  CAS  Google Scholar 

  108. Kerem B, Rommens JM, Buchanan JA, Markiewicz D, Cox TK, Chakravarti A, Buchwald M, Tsui L (1989) Identification of the cystic fibrosis gene: genetic analysis. Science 245:1073–1080.

    PubMed  CAS  Google Scholar 

  109. The Cystic Fibrosis Genetic Analysis Consortium. (1990) Worldwide survey of the ΔF508 mutation—Report from the Cystic Fibrosis Genetic Analysis Consortium. Am J Hum Genet 47:354–359.

    Google Scholar 

  110. Ng ISL, Pace R, Richard MV, Kobayashi K, Kerem B, Tsui L, Beaudet AC (1991) Methods for analysis of multiple cystic fibrosis mutations. Hum Genet 87:613–617.

    PubMed  CAS  Google Scholar 

  111. Kristidis P, Bozon D, Corey M, Markiewicz D, Rommens J, Tsui L, Durie P (1992) Genetic determination of exocrine pancreatic function in cystic fibrosis. Am J Hum Genet 50:1178–1184.

    PubMed  CAS  Google Scholar 

  112. Strong TV, Smit LS, Turpin SV, Cole JL, Tom Hon C, Markiewicz D, Petty TL, Craig MW, Rosenow EC, Tsui L, Iannuzzi MC, Knowles MR, Collins FS (1991) Cystic fibrosis gene mutation in two sisters with mild disease and normal sweat chloride electrolyte levels. N Engl J Med 325:163–1634.

    Google Scholar 

  113. Anguiano A, Oats RD, Amos JA, Dean M, Gerrard B, Stewart C, Maher TA, White MB, Milunsky A (1992) Congenital bilateral absence of the vas deferens. JAMA 267: 1794–1797.

    PubMed  CAS  Google Scholar 

  114. Canadian Task Force on the Periodic Health Examination. (1991) Periodic health examination, 1911 update: 4. Screening for cystic fibrosis, Can Med Assoc J 145:629–635.

    Google Scholar 

  115. Crossley JR, Smith PA, Edgar BW, Gluckman PD, Elliott RB (1981) Neonatal screening for cystic fibrosis, using immunoreactive trypsin assay in dried blood spots. Clin Chim Acta 113:111–121.

    PubMed  CAS  Google Scholar 

  116. Crossley JR, Eliott RB, Smith PA (1979) Dried-blood spot screening for cystic fibrosis in the newborn. Lancet 1:472–474.

    PubMed  CAS  Google Scholar 

  117. Hammond KB, Abman SH, Sokel RJ, Accurso FJ (1991) Efficacy of statewide neonatal screening for cystic fibrosis by assay of trypsinogen concentrations. N Engl J Med 325: 769–774.

    PubMed  CAS  Google Scholar 

  118. Rock MJ, Mischler EH, Farrell PM, Wei L, Bruns WT, Hassemer DJ, Laessig RH (1990) Newborn screening for cystic fibrosis is complicated by the age-related decline in immunoreactive trypsinogen levels. Pediatrics 85:1001–1007.

    PubMed  CAS  Google Scholar 

  119. Statement for the National Institutes of Health Workshop on Population Screening for the Cystic Fibrosis gene. (1990) N Engl J Med 323:7–71.

    Google Scholar 

  120. Rosenstein BJ, Langbaum TS (1982) Sweat sodium and chloride values. J Pediatr 1001–1002.

    Google Scholar 

  121. Webster HL (1983) Laboratory diagnosis of cystic fibrosis. CRS Crit Rev Clin Lab Sci 18:313–338.

    CAS  Google Scholar 

  122. LeGrys VA, Burnett RW (1994) Current status of sweat testing in North America. Results of the College of American Pathologists need assessment survey. Arch Pathol Lab Med 118:865–867.

    PubMed  CAS  Google Scholar 

  123. LeGrys VA, Barlow WK, Bracey A, Gibson LE, Hammond KB, Kraft K, Rosenstein BJ (1993) Sweat Testing: Sample Collection and Quantitative Analysis. NCCLS Document С 34–Р.

    Google Scholar 

  124. Gibson LE, diSant’Agnese PA, Schwachman H (1985) Procedure for the quantitative iontophoretic sweat test for cystic fibrosis. Cystic Fibrosis Foundation.

    Google Scholar 

  125. Hardy JD (1973) Sweat tests in the newborn period. Arch Dis Child 48:316–318.

    PubMed  CAS  Google Scholar 

  126. Rosentstein BJ, Langbaum TS (1982) Sweat testing in CF: Not to be taken lightly. J Respir Dis 3: 71–76.

    Google Scholar 

  127. Kerem E, Corey M, Karem B, Rommens J, Markiewicz D, Levison H, Tsui L, Durie P (1990) The relation between genotype and phenotype in cystic fibrosis-analysis of the most common mutation. N Engl J Med 323:1517–1522.

    PubMed  CAS  Google Scholar 

  128. Green MN, Clarke JT, Schwachman H (1958) Studies in CF; protein pattern in meconium ileus. Pediatrics 21:635–637.

    PubMed  CAS  Google Scholar 

  129. Hellsing K, Barrljung K, Ceder O, Kollberg H (1982) Meconium screening for cystic fibrosis. An eight-year follow-up study. Acta Paediatr Scand 71:827–832.

    PubMed  CAS  Google Scholar 

  130. Roberts IM (1990) Disorders of the pancreas in children. Gastroenterol Clin North Am 19:963–973.

    PubMed  CAS  Google Scholar 

  131. Gaskin KJ, Durie RR, Lee L, Hill R, Forstner GG (1984) Colipase and lipase secretion in childhood-onset pancreatic insufficiency: delineation of patients with steatorrhea secondary to relative colipase deficiency. Gastroenterology 86:1–7.

    PubMed  CAS  Google Scholar 

  132. Waters DL, Dorney SFA, Gaskin KJ, Gruca MA, O’Halloran M, Wilcken B (1990) Pancreatic function in infants identified as having cystic fibrosis in a neonatal screening program. N Engl J Med 322:303–308.

    PubMed  CAS  Google Scholar 

  133. Johansen HK, Nir M, Hoiby N, Koch C, Schwartz M (1991) Severity of cystic fibrosis in patients homozygons and heterozygous for Л508 mutation. Lancet 337:631–634.

    PubMed  CAS  Google Scholar 

  134. Nousia-Arvanitakis S, Arvanitakis C, Desai N, Greenberger NJ (1978) Fecal chymotrypsin compared with PABA test. J Pediatr 734–737.

    Google Scholar 

  135. Brown GA, Sule D, Williams J, Puntis JW, Booth IW, McNeish AS (1988) Fecal chymotrypsin: a reliable index of exocrine pancreatic function. Arch Dis Child 63: 785–789.

    PubMed  CAS  Google Scholar 

  136. Puntis JW, Berg JD, Buckley BM, Booth IW, McNeish AS (1988) Simplified oral pancreatic function test. Arch Dis Child 63:78–784.

    Google Scholar 

  137. Hubbard VS, Wolf RO, Lester LA, Egge AC (1984) Diagnostic and therapeutic applications of bentiromide screening test for exocrine pancreatic insufficiency in patients with cystic fibrosis. Comparison with other tests of exocrine pancreatic disease. Dig Dis Sci 29:881–889.

    PubMed  CAS  Google Scholar 

  138. Dalzell AM, Heaf DP (1990) Fluorescein dilaurate test of exocrine pancreatic function in cystic fibrosis. Arch Dis Child 65:788–789.

    PubMed  CAS  Google Scholar 

  139. Green RM, Austin S, McClena P, Jolliffe S, Weaver LT (1995) Spot urine pancreolauryl test for use in infancy. Arch Dis Child 72:233–234.

    PubMed  CAS  Google Scholar 

  140. Green MR, Austin S, Weaver LT (1993) Dual marker one day pancreolauryl test. Arch Dis Child 68:649–652.

    PubMed  CAS  Google Scholar 

  141. Cummings JGR, Forsyth JS, Boyd EJS, Frost GJ, Cuschieri A (1986) Diagnosis of exocrine pancreatic insufficiency in cystic fibrosis by use of fluorescein dilaurate test. Arch Dis Child 61:573–575.

    Google Scholar 

  142. Forsyth JS (1991) Fluorescein dilaurate test of exocrine pancreatic function in cystic fibrosis [Letter]. Arch Dis Child 66:273.

    PubMed  CAS  Google Scholar 

  143. Couper RT, Corey M, Moore DJ, Fisher LJ, Forstner GG, Durie PR (1992) Decline of exocrine pancreatic function in cystic fibrosis patients with pancreatic sufficiency. Pediatr Res 32:179–182.

    PubMed  CAS  Google Scholar 

  144. Couper RT, Corey M, Durie PR, Forstner GG, Moore DJ (1995) Longitudinal evaluation of serum trypsinogen measurement in pancreatic-insufficient and pancreatic-sufficient patients with cystic fibrosis. J Pediatr 127:408–413.

    PubMed  CAS  Google Scholar 

  145. Heijerman HG, Lamers CB, Bakker W, Dijkman JH (1993) Improvement of fecal fat excretion after addition of omeprazole to pancreas in cystic fibrosis is related to residual exocrine function of the pancreas. Dig Dis Sci 38:1–6.

    PubMed  CAS  Google Scholar 

  146. Puntis JWL (1993) Dual marker one day pancreolauryl test [Letter]. Arch Dis Child 69:471.

    PubMed  CAS  Google Scholar 

  147. Owyang C, Levitt M (1990) Chronic pancreatitis. In: Textbook of gastroenterology, Yamada T, ed. Philadelphia, PA, J.B. Lippinoctt; pp. 1874–1893.

    Google Scholar 

  148. Goebell H, Bode CH, Bastran R (1970) Clinisch asymptomatische funktion Storungen des exokuinen pankreas bei chromischen alkoholikern. Dtch Med Wochenschr 95: 808–810.

    CAS  Google Scholar 

  149. Van Lente F (1993) Free radicals. Anal Chem 374R-377R.

    Google Scholar 

  150. Mathew P, Wyllie R, Van Lente F, Caulfield M, Michener W (1991) Antioxidant levels in hereditary pancreatitis [Abstract]. Pediatr Res 29: 108A.

    Google Scholar 

  151. Delhaye M, Engelholm L, Cremer M (1985) Pancreas divisum: Is it a normal anatomic variant or anomaly. Gastroenterology 89:951–960.

    PubMed  CAS  Google Scholar 

  152. Adrian TE, Barnes AJ, Bloom SR (1979) Hypotrypsinemia in diabetes mellitus. Clin Chim Acta 97:213–216.

    PubMed  CAS  Google Scholar 

  153. Masoero G, Andriulli A, Bianco A, Benitti V, Marchetto M, De La Pierre M (1982) Diagnostic accuracy of serum cationic trypsinogen estimation for pancreatic diseases. Dig Dis Sci 27:1089–1094.

    PubMed  CAS  Google Scholar 

  154. Otte M, Thurmayr R, Thurmayr GR, Forell MM (1976) Diagnostic value of the provocative test with secretin and cholecystokinin/pancreozymin. Scand J Gastroenterol Supp 41 11:88.

    Google Scholar 

  155. Owyang C, Scarpello JH, Vinik AI (1982) Correlation between pancreatic enzyme secretion and plasma concentration of human pancreatic polypeptide in health and in chronic pancreatitis. Gastroenterology 83:55–59.

    PubMed  CAS  Google Scholar 

  156. Stern AI, Hansky J (1981) Secretin stimulated pancreatic polypeptide: a test for chronic pancreatitis. Aust NZ J Med 11:351–354.

    CAS  Google Scholar 

  157. Koch MB, Go VL, Dimagno EP (1985) Can plasma human pancreatic polypeptide be used to detect disease of the exocrine pancreas? May Clin Proc 259–265.

    Google Scholar 

  158. Malfertheimer P, Ditschuneit H, eds. (1986) Prognostic procedures in pancreatic disease, Berlin, Springer.

    Google Scholar 

  159. Lankisch PG, Schreiber A, Otto J (1983) Pancreolauryl test. Evaluation of a tubeless pancreatic function test in comparison with other indirect and direct tests for exocrine pancreatic function. Dig Dis Sci 28:49–493.

    Google Scholar 

  160. Lang C, Gyr K, Stadler GA, Gillessen D (1981) Assessment of exocrine pancreatic function by oral administration of N-benzoyl-L-tyrosyl-p-aminobenzoic acid (Bentiromide): 5 years clinical experience Br J Surg 68:771–775.

    PubMed  CAS  Google Scholar 

  161. Boyd EJ, Cumming JG, Cuschieri A, Wood RA, Wormsley KG (1982) Prospective comparison of the fluorescein-dilaurate test with the secretin-cholecystokmin test for pancreatic exocrine function. J Clin Pathol 35:124–1243.

    Google Scholar 

  162. Brayanza JM, Hunt LP, Warwick F (1982) Relationship between pancreatic exocrine function and ductal morphology in chronic pancreatitis. Gastroenterology 1341–1345.

    Google Scholar 

  163. Searles H (1986) Etiopathogenesis and definition of chronic pancreatitis. Dig Dis Sci 31: 915–1075.

    Google Scholar 

  164. Hayakawa T, Kondo T, Shibata T, Kitagawa M, Nakae Y, Hayakawa S (1994) Trypsin(ogen) content of pancreatic calculi in chronic calcified pancreatitis in man. Dig Dis Sci 39:1345–1350.

    PubMed  CAS  Google Scholar 

  165. DiMagno EP, Go VLW, Summerskill WHJ (1973) Relations between pancreatic enzyme outputs and malabsorption in severe pancreatic insufficiency. N Engl J Med 288: 813–817.

    PubMed  CAS  Google Scholar 

  166. O’Keefe SJ, Adam J (1984) Assessment of adequacy of pancreatic enzyme replacement with the multiple-phase carbon-14–triolein test. S Afr Med J 66:763–765.

    PubMed  Google Scholar 

  167. Frey CF (1981) Role of subtotal pancreatectomy and pancreticojejunostomy in chronic pancreatitis. J Surg Res 31:361–365.

    PubMed  CAS  Google Scholar 

  168. Frey CF, Child CG, Fry W (1976) Pancreatectomy for chronic pancreatitis. Ann Surg 184:403–405.

    PubMed  CAS  Google Scholar 

  169. Doty JE, Fink AS, Meyer JH (1989) Alterations in digestive function caused by pancreatic disease. Surg Clin North Am 69:447–465.

    PubMed  CAS  Google Scholar 

  170. Dimagno EP, Malagelada JR, Go VLW (1979) The relationships pancreatic ductal obstruction and pancreatic secretion in man. May Clin Proc 54:157–162.

    CAS  Google Scholar 

  171. Heptner G, Domshcke S, Domschke W (1989) Exocrine pancreatic function after gastrectomy. Specificity of indirect tests. Gastroenterology 97:147–153.

    PubMed  CAS  Google Scholar 

  172. Liddle RA (1991) Congenital and hereditary diseases of the pancreas. In: Textbook of gastroenterology, Yamada T, ed. Philadelphia, PA, J.B. Lippincott, pp. 1937–1951.

    Google Scholar 

  173. Novis BH, Bank S, Young GO, Marks IN (1975) Chronic pancreatitis and alpha-1–anti-trypsin. Lancet 2:748–749.

    PubMed  CAS  Google Scholar 

  174. Dossetor JF, Spratt HC, Rolles CJ, Seem CP, Heeley AF. (1989) Immunoreactive trypsin in Schwachman’s syndrome. Arch Dis Child 64:395–396.

    PubMed  CAS  Google Scholar 

  175. Jones NL, Hofley PM, Durie PR (1994) Pathophysiology of the pancreatic defect in Johanson-Blizzard syndrome: a disorder of acinar development. J Pediatr 125:406–408.

    PubMed  CAS  Google Scholar 

  176. Daentl DL, Frias JL, Gilbert EF, Opitz JM (1979) The Johanson-Blizzard syndrome: Case report and autopsy findings. Am J Med Genet 3:129.

    PubMed  CAS  Google Scholar 

  177. Muller DP, McCollum JP, Trompeter RS, Harries JT (1975) Proceedings: Studies on the mechanism of fat absorption in congenital isolated lipase deficiency. Gut 16:838.

    PubMed  CAS  Google Scholar 

  178. Figarella C, Negri GA, Sarles H (1972) Presence of colipase in congenital pancreatic lipase deficiency. Biochem Biophys Acta 280:205–210.

    PubMed  CAS  Google Scholar 

  179. Lowe C, May DC (1951) Selective pancreatic deficiency: absent amylase, diminished trypsin, and normal lipase. Am J Dis Child 82:459.

    CAS  Google Scholar 

  180. Morris MD, Fisher DA (1967) Trypsinogen deficiency disease. Am J Dis Child 114: 203–205.

    PubMed  CAS  Google Scholar 

  181. Tarlow MJ, Hadorn B, Arthurton MW, Lloyd JK (1970) Intestinal enterokinase deficiency. A newly recognized disorder of protein digestion. Arch Dis Child 45:651–656.

    PubMed  CAS  Google Scholar 

  182. Lembcke B, Grimm K, Lankisch PG (1987) Raised fecal fat concentration is not a valid indicator of pancreatic steatorrhea. Am J Gastroenterol 82:526–531.

    PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Humana Press Inc.

About this chapter

Cite this chapter

Van Lente, F. (1997). Exocrine Disorders of the Pancreas. In: Lott, J.A. (eds) Clinical Pathology of Pancreatic Disorders. Pathology and Laboratory Medicine, vol 2. Humana Press. https://doi.org/10.1007/978-1-4612-3964-2_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-3964-2_2

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-4612-8443-7

  • Online ISBN: 978-1-4612-3964-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics