Advertisement

Ionotropic Glutamate Receptors

Heterogeneity by Posttranscriptional Modifications
  • Bernd Sommer
Part of the The Receptors book series (REC)

Abstract

Glutamate is the major mediator of fast excitatory transmission in the mammalian central nervous system (CNS). It plays an important role in processes controlling synaptic plasticity, memory formation, and learning. The release of excess glutamate and overexcitation are the causes of neuronal damage and cell death in pathological conditions, such as ischemia (Bliss and Collingridge, 1993; Choi, 1992; Mayer and Westbrook 1987). Consequently, the glutamatergic system has been a primary target of biomedical research. Glutamatergic transmission acts through specific receptors, which are pharmacologically classified into three distinct, cation selective, ligand-gated ion channels based on their preferred agonists, N-methyl-D-aspartate (NMDA), α-amino-3-hydroxy-5-methyl-4-isoxazole acid (AMPA), and kainate. Expression cloning of AMPA (Hollmann et al., 1989) and NMDA (Moriyoshi et al., 1991) identified the molecular entities of these major receptor classes and triggered numerous cloning approaches based on sequence similarity. These efforts resulted in an explosive increase in our knowledge of ionotropic GluR molecular biology. To date, 16 individual ionotropic GluR genes have been identified. Their degree of molecular relationship largely matches the previous pharmacological classification (for review, see Hollmann and Heinemann, 1994).

Keywords

Glutamate Receptor Splice Variant AMPA Receptor Receptor Subunit Site Editing 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Anantheram, V., Panchal, R. G., Wilson, A., Koltchine, V. V., Treistman, S. N., and Bayley, H. (1992) Combinatorial RNA splicing alters the surface charge on the NMDA receptor. FEBS Lett. 305, 27–30.CrossRefGoogle Scholar
  2. Bass, B. L. and Weintraub, H. (1988) An unwinding activity that covalently modifies its double-stranded RNA substrate. Cell 55, 1089–1098.PubMedCrossRefGoogle Scholar
  3. Bernard, A. and Khrestchatisky, M. (1994) Assessing the extent of RNA editing in the TMII regions of GluR5 and GluR6 kainate receptors during rat brain development. J. Neurochem. 62, 2057–2060.PubMedCrossRefGoogle Scholar
  4. Bettler, B., Boulter, J., Hermans-Borgmeyer, I., O’Shea-Greenfield, A., Deneris, E. S., Moll, C, Borgmeyer, U., Hollmann, M., and Heinemann, S. (1990) Cloning of a novel GluR subunit, GluR5: expression in the nervous system during development. Neuron 5, 583–595.PubMedCrossRefGoogle Scholar
  5. Bliss, T. V. and Collingridge, G. L. (1993) A synaptic model of memory: long term potentiation in the hippocampus. Nature 361, 31–39.PubMedCrossRefGoogle Scholar
  6. Brusa, R., Zimmermann, F., Koh, D. S., Feldmeyer, D., Gass, P., Seeburg, P. H., and Sprengel, R. (1995) Early-onset epilepsy and postnatal lethality associated with an editing-deficient GluR-B allele in mice. Science 270, 1677–1680.PubMedCrossRefGoogle Scholar
  7. Burnashev, N., Monyer, H., Seeburg, P. H., and Sakmann, B. (1992) Divalent ion permeability of AMPA receptor channels is dominated by the edited form of a single subunit. Neuron 8, 189–198.PubMedCrossRefGoogle Scholar
  8. Cha, J. H., Kinsman, S. L., and Johnston, M. V. (1994) RNA editing of a human GluR subunit. Brain Res. Mol. Brain Res. 22, 323–328.PubMedCrossRefGoogle Scholar
  9. Choi, D. W. (1992) Bench to bedside: the glutamate connection. Science 258, 241–243.PubMedCrossRefGoogle Scholar
  10. Christnacher, A. and Sommer, B. (1995) Alternative splicing of AMPA receptor sub-units: regulation in clonal cell lines. FEBS Lett. 373, 93–96.PubMedCrossRefGoogle Scholar
  11. Durand, G. M., Gregor, P., Zheng, X., Bennett, M. V. L., Uhl, G. R., and Zukin, R. S. (1992) Cloning of an apparent splice variant of the rat N-methyl-D-aspartate receptor NMDAR1 with altered sensitivity to polyamines and activators of protein kinase C. Proc. Natl. Acad. Sci. USA 89, 9359–9363.PubMedCrossRefGoogle Scholar
  12. Eastwood, S. L., Burnet, P. W. J., Beckwith, J., Kerwin, R. W., and Harrison, P. J. (1994) AMPA glutamate receptor and their flip and flop mRNAs in human hippocampus. Neuroreport 5, 1325–1328.PubMedGoogle Scholar
  13. Egebjerg, J., Kukekov, V., and Heinemann, S. F. (1994) Intron sequence directs RNA editing of the glutamate receptor subunit GluR2 coding sequence. Proc. Natl. Acad. Sci. USA 91, 10,270–10,274.CrossRefGoogle Scholar
  14. Gallo, V., Upson, L. M., Hayes, W. P., Vyklicky, L., Jr., Winters, C. A., and Buonnano, A. (1992) Molecular cloning and developmental analysis of a new glutamate receptor subunit isoform in the cerebellum. J. Neurosci. 12, 1010–1023.PubMedGoogle Scholar
  15. Gregor, P., O’Hara, B. F., Yang, X., and Uhl, G. R. (1993) Expression and novel subunit isoforms of glutamate receptor genes GluR5 and GluR6. Neuroreport 4, 1343–1346.PubMedCrossRefGoogle Scholar
  16. Higuchi, M., Single, F. M., Köhler, M., Sommer, B., Sprengel, R., and Seeburg, P. H. (1993) RNA editing of AMP A receptor subunit GluR-B: a base-paired intron—exon structure determines position and efficiency. Cell 75, 1361–1370.PubMedCrossRefGoogle Scholar
  17. Hollmann, M., Boulter, J., Maron, C, Beasley, L., Sullivan, J., Pecht, G., and Heinemann, S. (1993) Zinc potentiates agonist-induced currents at certain splice variants of the NMDA receptor. Neuron 5, 555–567.Google Scholar
  18. Hollmann, M., Hartley, M., and Heinemann, S. (1991) Ca2+ permeability of KA-AMPA-gated glutamate channels depends on subunit composition. Science 252, 851–853.PubMedCrossRefGoogle Scholar
  19. Hollmann, M. and Heinemann, S. (1994) Cloned GluRs. Annu. Rev. Neurosci. 17, 31–108.PubMedCrossRefGoogle Scholar
  20. Hollmann, M., O’Shea-Greenfield, A., Rogers, S. W., and Heinemann, S. (1989) Cloning by functional expression of a member of the glutamate receptor family. Nature 342, 643–648.PubMedCrossRefGoogle Scholar
  21. Hough, R. F. and Bass, B. L. (1994) Purification of the Xenopus laevis double-stranded RNA adenosine deaminase. J. Biol. Chem. 269, 9933–9939.PubMedGoogle Scholar
  22. Kamphuis, W., De Rijk, T. C, Talami, L. M., and Lopes da Silva, F. H. (1994) Rat hippocampal kindling induces changes in the glutamate receptor mRNA expression patterns in dentate granule neurons. Eur. J. Neurosci. 6, 1119–1127.PubMedCrossRefGoogle Scholar
  23. Kamphuis, W., Monyer, H., De Rijk, T. C, and Lopes da Silva, F. H. (1992) Hippocampal kindling increases the expression of receptor-A Flip and -B Flip mRNA in dentate granule cells. Neurosci. Lett. 148, 51–54.PubMedCrossRefGoogle Scholar
  24. Kim, U., Garner, T. L., Sanford, T., Speicher, D., Murray, J. M., and Nishikura, K. (1994a) Purification and characterization of double-stranded RNA adenosine deaminase from bovine nuclear extracts. J. Biol. Chem. 219, 13,480–13,489.Google Scholar
  25. Kim, U., Wang, Y., Sanford, T., Zeng, Y., and Nishikura, K. (1994b) Molecular cloning of cDNA for double-stranded RNA adenosine deaminase, a candidate enzyme for nuclear RNA editing. Proc. Natl. Acad. Sci. USA 91, 11,457–11,461.Google Scholar
  26. Köhler, M., Burnashev, N., Sakmann, B., and Seeburg, P. H. (1993) Determinants of Ca2+ permeability in both TM1 and TM2 of high affinity kainate receptor channels: diversity by RNA editing. Neuron 10, 491–500.PubMedCrossRefGoogle Scholar
  27. Köhler, M., Kornau, H.-C, and Seeburg, P. H. (1994) The organization of the gene for the functionally dominant α-amino-3-hydroxy-5-methyl-isoxazole-4-propionic acid receptor subunit GluR-B. J. Biol. Chem. 269, 17,367–17,370.Google Scholar
  28. Kristensen, P. (1993) Differential expression of AMPA glutamate receptor mRNAs in the rat adrenal gland. FEBS Lett. 332, 14–18.PubMedCrossRefGoogle Scholar
  29. Laurie, D. J. and Seeburg, P. H. (1994a) Ligand affinities at recombinant N-methyl-D-aspartate receptors depend on subunit composition. Eur. J. Pharmacol. Mol. Pharmacol. Section 268, 335–345.CrossRefGoogle Scholar
  30. Laurie, D. J. and Seeburg, P. H. (1994b) Regional and developmental heterogeneity in splicing of the rat brain NMDAR1 mRNA. J. Neurosci. 14, 3180–3194.PubMedGoogle Scholar
  31. Lomeli, H., Mosbacher, J., Melcher, T., Hoger, T., Geiger, J. R., Kuner, T., Monyer, H., Higuchi, M., Bach, A., and Seeburg, P. H. (1994) Control of kinetic properties of AMPA receptor channels by nuclear RNA editing. Science 266, 1709–1713.PubMedCrossRefGoogle Scholar
  32. Mayer, M. L. and Westbrook, G. L. (1987) The physiology of excitatory amino acids in the vertebrate CNS. Prog. Neurobiol. 28, 197–276.Google Scholar
  33. Melcher, T., Maas, S., Herb, A., Sprengel, R., Seeburg, P. H., and Higuchi, M. (1996) A mammalian RNA editing enzyme. Nature 379, 460–464.PubMedCrossRefGoogle Scholar
  34. Melcher, T., Maas, S., Higuchi, M., Keller, W., and Seeburg, P. H. (1995) Editing of α-amino-3-hydroxy-5-methyl-isoxazole-4-propionic acid receptor subunit GluR-B pre-mRNA in vitro reveals site selective adenosine to inosine conversion. J. Biol. Chem. 270, 8566–8570.PubMedCrossRefGoogle Scholar
  35. Monyer, H., Seeburg, P. H., and Wisden, W. (1991) Glutamate-operated channels: developmentally early and mature forms arise by alternative splicing. Neuron 6, 799–810.PubMedCrossRefGoogle Scholar
  36. Moriyoshi, K., Masu, M., Ishii, T., Shigemoto, R., Mizuno, N., and Nakanishi, S. (1991) Molecular cloning and characterization of the rat NMDA receptor. Nature 354, 31–37.PubMedCrossRefGoogle Scholar
  37. Mosbacher, J., Schoepfer, R., Monyer, H., Burnashev, N., Seeburg, P. H., and Ruppersberg, J. P. (1994) A molecular determinant for submillisecond desensitization in glutamate receptors. Science 266, 1059–1062.PubMedCrossRefGoogle Scholar
  38. Nakanishi, N., Axel, R., and Shneider, N. A. (1992) Alternative splicing generates functionally distinct N-methyl-D-aspartate receptors. Proc. Natl. Acad. Sci. USA 89, 8552–8556.PubMedCrossRefGoogle Scholar
  39. Nutt, S. L. and Kamboj, R. K. (1994) Differential RNA editing efficiency of AMPA receptor subunit GluR-2 in human brain. Neuroreport 5, 1679–1683.PubMedCrossRefGoogle Scholar
  40. O’Connell, M. A. and Keller, W. (1994) Purification and properties of double-stranded RNA-specific adenosine deaminase from calf thymus. Proc. Natl. Acad. Sci. USA 91, 10,596–10,600.Google Scholar
  41. O’Connell, M. A., Krause, S., Higuchi, M., Hsuan, J. J., Totty, N. F., Jenny, A., and Keller, W. (1995) Cloning of cDNAs encoding mammalian double-stranded RNA-specific adenosine deaminase. Mol Cell Biol. 15, 1389–1397.PubMedGoogle Scholar
  42. Partin, K. M., Patneau, D. K., and Mayer, M. L. (1994) Cyclothiazide differentially modulates desensitization of α-amino-3-hydroxy-5-methyl-isoxazole-4-propionic acid receptor splice variants. Mol. Pharmacol. 46, 129–138.PubMedGoogle Scholar
  43. Paschen, W., Dux, E., and Djuricic, B. (1994a) Developmental changes in the extent of RNA editing of glutamate receptor subunit GluR5 in rat brain. Neurosci. Lett. 174, 109–112.PubMedCrossRefGoogle Scholar
  44. Paschen, W., Hedreen, J. C, and Ross, C. A. (1994b) RNA editing of the glutamate receptor subunits GluR2 and GluR6 in human brain tissue. J. Neurochem. 63, 1596–1602.PubMedCrossRefGoogle Scholar
  45. Pollard, H., Heron, A., Moreau, J., Ben Ari, Y., and Khrestchatisky, M. (1993) Alterations of the GluR-B AMPA receptor subunit flip/flop expression in kainate-induced epilepsy and ischemia. Neuroscience 57, 545–554.PubMedCrossRefGoogle Scholar
  46. Poison, A. G. and Bass, B. L. (1994) Preferential selection of adenosines for modification by double-stranded RNA adenosine deaminase. EMBO J. 13, 5701–5711.Google Scholar
  47. Powell, L. M., Wallis, S. C., Pease, R. J., Edwards, Y. H., Knott, T. J., and Scott, J. (1987) A novel form of tissue-specific RNA processing produces apolipoprotein-B48 in intestine. Cell 50, 831–840.PubMedCrossRefGoogle Scholar
  48. Puchalski, R. B., Louis, J. C., Brose, N., Traynelis, S. F., Egebjerg, J., Kukekov, V., Wenthold, R. J., Rogers, S. W., Lin, F., Moran, T., Montison, J. H., and Heinemann, S. F. (1994) Selective RNA editing and subunit assembly of native glutamate receptors. Neuron 13, 131–147.PubMedCrossRefGoogle Scholar
  49. Rueter, S. M., Burns, C. M., Coode, S. A., Mookherjee, P., and Emeson, R. B. (1995) Glutamate receptor RNA editing in vitro by enzymatic conversion of adenosine to inosine. Science 267, 1491–1494.PubMedCrossRefGoogle Scholar
  50. Sommer, B., Burnashev, N., Verdoorn, T. A., Keinänen, K., Sakmann, B., and Seeburg, P. H. (1992) A glutamate receptor channel with high affinity for domoate and kainate. EMBO J. 11,1651–1656.PubMedGoogle Scholar
  51. Sommer, B., Keinänen, K., Verdoorn, T. A., Wisden, W., Burnashev, N., Herb, A., Köhler, M., Takagi, T., Sakmann, B., Seeburg, P. H. (1990) Flip and flop: a cell-specific functional switch in glutamate-operated channels of the CNS. Science 249, 1580–1585.PubMedCrossRefGoogle Scholar
  52. Sommer, B., Köhler, M., Sprengel, R., and Seeburg, P. H. (1991) RNA editing in brain controls a determinant of ion flow in glutamate-gated channels. Cell 67, 11–19.PubMedCrossRefGoogle Scholar
  53. Standaert, D. G., Testa, C. M., Penney, J. B., Jr., and Young, A. B. (1993) Alternatively spliced isoforms of the NMDAR1 glutamate receptor subunit: differential expression in the basal ganglia of the rat. Neurosci. Lett. 152, 161–164.PubMedCrossRefGoogle Scholar
  54. Sugihara, H., Moriyoshi, K., Ishii, T., Masu, M., and Nakanishi, S. (1992) Structures and properties of seven isoforms of the NMDA receptor generated by alternative splicing. Biochem. Biophys. Res. Commun. 185, 826–832.CrossRefGoogle Scholar
  55. Tingley, W. G., Roche, K. W., Thompson, A. K., and Huganir, R. L. (1993) Regulation of NMDA receptor phosphorylation by alternative splicing of the C-terminal domain. Nature 364, 70–73.PubMedCrossRefGoogle Scholar
  56. Verdoorn, T. A., Burnashev, N., Monyer, H., Seeburg, P. H., and Salkmann, B. (1991) Structural determinants of ion flow through recombinant glutamate receptor channels. Science 252, 1715–1718.PubMedCrossRefGoogle Scholar
  57. Wagner, R. W., Smith, J. E., Cooperman, B. S., and Nishikura, K. (1989) A double-stranded RNA unwinding activity introduces structural alterations by means of adenosine to inosine conversions in mammalian cells and Xenopus eggs. Proc. Natl. Acad. Sci. USA 86, 2647–2651.PubMedCrossRefGoogle Scholar
  58. Yamazaki, M., Mori, H., Araki, K., Mori, K. J., and Mishina, M (1992) Cloning, expression and modulation of a mouse NMDA receptor subunit. FEBS Lett. 300, 39–45.PubMedCrossRefGoogle Scholar
  59. Yang, J.-H., Sklar, P., Axel, R., and Maniatis, T. (1995) Editing of glutamate receptor subunit B pre-mRNA in vitro by site-specific deamination of adenosine. Nature 374,77–81.PubMedCrossRefGoogle Scholar

Copyright information

© Humana Press Inc. 1997

Authors and Affiliations

  • Bernd Sommer

There are no affiliations available

Personalised recommendations