Advertisement

Pharmacology of Recombinant NMDA Receptors

Possible Mechanisms for NMDA Receptor Heterogeneity
  • David R. Lynch
  • Michael J. Gallagher
  • Shelley J. Lenz
  • Norifusa J. Anegawa
  • Elfrida L. Grant
Part of the The Receptors book series (REC)

Abstract

Glutamate acts postsynaptically at a variety of receptors, including ionotropic and metabotropic types (Choi, 1988; Collingridge and Lester, 1989; Lipton, 1993). The ionotropic receptors are separated by their prototypic agonists into α-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid (AMPA) receptors, kainate receptors, and N-methyl-D-aspartate (NMDA) receptors. The first two types are glutamate-gated cation channels that are relatively impermeable to calcium, whereas the NMDA receptor is a glutamate-gated cation channel with a high permeability to calcium.

Keywords

NMDA Receptor NMDA Receptor Subunit Glycine Site Glutamate Antagonist Heteromeric Receptor 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Anand, R., Conroy, W. G., Schoepfer, R., Whiting, P., and Lindstrom, J. (1991) Neuronal nicotinic acetylcholine receptors expressed in Xenopus oocytes have a pentameric quarternary structure. J. Biol. Chem. 266, 11,192–11,198.Google Scholar
  2. Anantharam, V., Panchal, R. G., Wilson, A., Kolchine, V. V., Treistman, S. N., and Bayley, H. (1992) Combinatorial RNA splicing alters the surface charge on the NMDA receptor. FEBS Lett. 305, 27–30.PubMedCrossRefGoogle Scholar
  3. Anegawa, N. J., Lynch, D. R., and Pritchett, D. L. (1994) Characterization of 3H dichlorokynurenic acid binding in cloned NMDA receptors expressed in transfected cells. Neurosci. Abst. 20, 469.Google Scholar
  4. Anegawa, N. J., Lynch, D. R., Verdoorn, T., and Pritchett, D. L. (1995) Transfection of 293 cells with NMDA receptor subunits leads to cell death. J. Neurochem. 64, 2005–2012.Google Scholar
  5. Beaton, J. A., Stemsrud, K., and Monaghan, D. T. (1992) Identification of a novel N-methyl-D-aspartate receptor population in the rat medial thalamus. J. Neurochem. 59, 754–757.PubMedCrossRefGoogle Scholar
  6. Benveniste, M. and Mayer, M. L. (1993) Multiple effects of spermine on N-methyl-D-aspartate responses of rat cultured hippocampal neurons. J. Physiol. 464, 131–163.PubMedGoogle Scholar
  7. Bernard, A., Rafiki, A., Ben-Ari, Y., and Khrestrchatisky, M. (1994) Molecular characterization of novel NR2C subunits of the NMDA receptor, generated by alternative splicing during rat cerebellar development. Neurosci. Abst. 20, 214.10.Google Scholar
  8. Buller, A. L., Larson, H. C., Schneider, B. E., Beaton, J. A., Morrisett, R.A., and Monaghan, D. T. (1994) The molecular basis of NMDA receptor subtypes: native receptor diversity is predicted by subunit composition. J. Neurosci. 14, 5471–5484.PubMedGoogle Scholar
  9. Burnashev, N., Schoepfer, R., Monyer, H., Rupperberg, J. P., Gunther, W., Seeburg, P. H., and Sakmann, B. (1992) Control by asparagine residues of calcium permeability, and magnesium block in NMDA receptors. Science 257, 1415–1419.PubMedCrossRefGoogle Scholar
  10. Chazot, P. L., Cik, M., and Stephenson, F. A. (1992) Immunological detection of the NMDAR1 glutamate receptor subunit expressed in embryonic kidney 293 cells and in rat brain. J. Neurochem. 59, 1176–1178.PubMedCrossRefGoogle Scholar
  11. Chazot, P. L., Coleman, S. K., Cik, M., and Stephenson, F. A. (1994) Molecular characterization of N-methyl-D-aspartate receptors expressed in mammalian cells yields evidence for the coexistence of three subunit types within a discrete receptor molecule. J. Biol. Chem. 269, 24,403–24,409.Google Scholar
  12. Chen, C. and Okayama, H. (1987) High efficiency transfection of mammalian cells by plasmid DNA. Mol. Cell Biol. 7, 2745–2752.PubMedGoogle Scholar
  13. Choi, D. (1988) Calcium mediated neurotoxicity: relationship to specific channel types and role in ischemic damage. Trends Neurosci. 7, 357–368.Google Scholar
  14. Cik, M., Chazot, P. L., and Stephenson, F. A. (1993) Optimal expression of cloned NMDAR1/NMDA R2A heteromeric glutamate receptors: a biochemical characterization. Biochem. J. 296, 877–883.PubMedGoogle Scholar
  15. Cik, M., Chazot, P. L., and Stephenson, F. A. (1994) Expression of NMDAR1–1a (N598Q)/NMDAR2A receptors results in decreased cell mortality. Eur. J. Pharmacol. 266, 1–3.CrossRefGoogle Scholar
  16. Collingridge, G. L. and Lester, R. A. J. (1989) Excitatory amino acid receptors in the vertebrate central nervous system. Pharmacol. Rev. 41, 143–210.PubMedGoogle Scholar
  17. Durand, G. ML, Gregor, P., Zheng, X., Bennett, M. V., Uhl, G. R., and Zukin, R. S. (1992) Cloning of an apparent splice variant of the rat N-methyl-D-aspartate receptor NMDAR1 with altered sensitivity to polyamines and activators of protein kinase C. Proc. Natl. Acad. Sci. USA 89, 9359–9363.PubMedCrossRefGoogle Scholar
  18. Fagg, G. E. (1987) Phencyclidine and related drugs bind to the activated N-methyl-D-aspartate receptor-channel complex in rat brain membranes. Neurosci. Lett. 76, 221–227.PubMedCrossRefGoogle Scholar
  19. Farrant, M., Feldmeyer, D., Takahashi, T., and Cull-Candy, S. G. (1993) NMDA receptor diversity in the developing cerebellum. Nature 368, 335–338.CrossRefGoogle Scholar
  20. Fletcher, E. J. and MacDonald, J. F. (1993) Haloperidol interacts with the strychnine-insensitive glycine site at the NMDA receptor in cultured mouse hippocampal neurones. Eur. J. Pharmacol. 235, 291–295.PubMedCrossRefGoogle Scholar
  21. Frandsen, A. and Schousboe, A. (1991) Dantrolene prevents glutamate cytotoxicity and Ca++ release from intracellular stores in cultured cerebral cortical neurons. J. Neurochem. 56, 1075–1078.PubMedCrossRefGoogle Scholar
  22. Franklin, P. H. and Murray, T. F. (1992) High-affinity [3H]dextrorphan binding in rat brain is localized to a noncompetitive antagonist site of the activated N-methyl-D-aspartate receptor cation channel. Mol. Pharmacol. 41, 134–146.PubMedGoogle Scholar
  23. Gallagher, M. J., Pritchett, D. B., and Lynch, D. R. (1996) Separation of ifenprodil and polyamine effects at recombinant NMDA receptors. J. Biol. Chem. 271, 9603–9611.PubMedCrossRefGoogle Scholar
  24. Grimwood, S., LeBourdelles, B., and Whiting, P. J. (1995) Recombinant human NMDA homomeric NR1 receptors expressed in mammalian cells. J. Neurochem. 64, 525–530.PubMedCrossRefGoogle Scholar
  25. Hirai, H., Kirsch, J., Laube, B., Betz, H., and Kuhse, J. (1996) The glycine binding site of the N-methyl D-aspartate receptor subunit NR 1—identification of novel coagonist potentiation in the extracellular M3-M4 loop region. Proc. Natl. Acad. Sci. USA 93, 6031–6036.PubMedCrossRefGoogle Scholar
  26. Hollmann, M., Boulter, J., Maron, C., Beasley, L., Sullivan, J., Pecht, G., and Heinemann, S. (1993) Zinc potentiates agonist-induced currents at certain splice variants of the NMDA receptor. Neuron 10, 943–954.PubMedCrossRefGoogle Scholar
  27. Hollmann, M., Maron, C., and Heinemann, S. (1994) N-glycosylation site tagging suggests a three transmembrane domain topology for the glutamate receptor GluR1. Neuron 13, 1331–1343.PubMedCrossRefGoogle Scholar
  28. Huettner, J. E. and Bean, B. P. (1988) Block of N-methyl-D-aspartate-activated current by the anticonvulsant MK 801: selective binding to open-channels. Proc. Natl. Acad. Sci. USA 85, 1307–1311.PubMedCrossRefGoogle Scholar
  29. Ilvin, V., Guastella, J., Cai, S. X., Weber, E., and Woodward, R. M. (1994) Subunit specific inhibition of cloned NMDA receptors by haloperidol. Neurosci. Abst. 20, 1143.Google Scholar
  30. Ishii, T., Moriyoshi, K., Sugihara, H., Sakurada, K., Kadotani, H., Yokoi, M., Akazawa, C., Shigemoto, R., Mizuno, N., Masu, M., and Nakanishi S. (1993) Molecular characterization of a family of N-methyl-D-aspartate receptor subunits. J. Biol. Chem. 268, 2836–2843.PubMedGoogle Scholar
  31. Kashiwagi, K., Fukuchi, J., Chao, J., Igarashi, K., and Williams, K. (1996) An aspartate residue in the extracellular loop of the N-methyl D-aspartate receptor controls sensitivity to spermine and protons. Mol. Pharmacol. 49, 1131–1141.PubMedGoogle Scholar
  32. Kleckner, N. W. and Dingledine, R. (1988). Requirement for glycine in activation of NMDA receptors expressed in Xenopus oocytes. Science 241, 835–837.PubMedCrossRefGoogle Scholar
  33. Kohr, G., Eckardt, S., Luddens, H., Monyer, H., and Seeburg, P.H. (1994) NMDA receptor channels: subunit-specific potentiation by reducing agents. Neuron 12, 1031–1040.PubMedCrossRefGoogle Scholar
  34. Kuryatov, A., Laube, B., Betz, H., and Kuhse, J. (1994) Mutational analysis of the glycine-binding site of the NMDA receptor: structural similarity with bacterial amino acid-binding proteins. Neuron 12, 1291–1300.PubMedCrossRefGoogle Scholar
  35. Laube, B., Kuryatov, A., Kuhse, J., and Betz, H. (1993) Glycine—glutamate interactions at the NMDA receptor: role of cysteine residues. FEBS Lett. 335, 331–334.PubMedCrossRefGoogle Scholar
  36. Laurie, D. J. and Seeburg, P. H. (1994a) Ligand affinities at recombinant N-methyl-D-aspartate receptors depend on subunit composition. Eur. J. Pharmacol. 268, 335–345.PubMedCrossRefGoogle Scholar
  37. Laurie, D. J. and Seeburg, P. H. (1994b) Regional and developmental heterogeneity in splicing of the rat brain NMDAR1 mRNA. J. Neurosci. 14, 3180–3194.PubMedGoogle Scholar
  38. Lipton, S. (1993) Prospects for clinically tolerated NMDA antagonists: open-channel blockers and alternative redox states of nitric oxide. Trends Neurosci. 16, 527–532.PubMedCrossRefGoogle Scholar
  39. Lipton, S. and Rosenberg, P. A. (1994) Excitatory amino acids as a final common pathway for neurologic disorders. N. Engl. J. Med. 330, 613–622.PubMedCrossRefGoogle Scholar
  40. Lynch, D. R., Anegawa, N. J., Verdoorn, T., and Pritchett, D. B. (1994) N-methyl-D-aspartate receptors: different subunit requirement for binding of glutamate antagonists, glycine antagonists, and channel-blocking agents. Mol. Pharm. 45, 540–545.Google Scholar
  41. Lynch, D. R. and Gallagher, M. (1996) Interactions of haloperidol with the NMDA receptor: pharmacology and developmental regulation. J. Pharmacol. Exp. Ther. (in press).Google Scholar
  42. Lynch, D. R., Lawrence, J. J., Lenz, S., Anegawa, N. J., Dichter, M., and Pritchett, D. B. (1995) Pharmacological characterization of heterodimeric NMDA receptors composed of NR1a and 2B subunits: differences with receptors formed from NR1a and 2A. J. Neurochem. 64, 1462–1468.PubMedCrossRefGoogle Scholar
  43. Maragos, W. F., Penney, J. B., and Young, A. B. (1988) Anatomic correlation of NMDA and [3H]TCP labeled receptors in rat brain. J. Neurosci. 8, 493–501.PubMedGoogle Scholar
  44. Marti, T., Benke, D., Mertens, S., Heckendorn, R., Pozza, M., Allgeier, H., Angst, C., Laurie, D., Seeburg, P., and Mohler, H. (1993) Molecular distinction of three N-methyl-D-aspartate-receptor subtypes in situ and developmental receptor maturation demonstrated with the photoaffinity ligand 125I-labeled CGP 55802A. Proc. Natl. Acad. Sci. USA 90, 8434–8438.PubMedCrossRefGoogle Scholar
  45. Mcdonald, J. W., Penney, J. B., Johnston, M. V., and Young, A. B. (1990) Characterization and regional distribution of strychnine-insensitive [3H]glycine binding sites in rat brain by quantitative receptor autoradiography. Neuroscience 35, 653–668.PubMedCrossRefGoogle Scholar
  46. McKernan, R. M., Quirk, K., Prince, R., Cox, P. A., Gillard, N. P., Ragan, C. I., and Whiting, P. (1991) GABA-A receptor subtypes immunopurified from rat brain with alpha subunit-specific antibodies have unique pharmacological properties. Neuron 7, 667–676.PubMedCrossRefGoogle Scholar
  47. Meguro, H., Mori, H., Araki, K., Kushiya, E., Kutsuwada, T., Yamazaki, M., Kumanishi, T., Arakawa, M., Sakimura, K., and Mishina, M. (1992) Functional characterization of a heteromeric NMDA receptor channel expressed from cloned cDNAs. Nature 357, 70–74.PubMedCrossRefGoogle Scholar
  48. Monaghan, D. T. and Beaton, J. A. (1991) Quinolinate differentiates between forebrain and cerebellar NMDA receptors. Eur. J. Pharmacol. 194, 123–125.PubMedCrossRefGoogle Scholar
  49. Monaghan, D. T., Olverman, H. J., Nguyen, L., Watkins, J. C., and Cotman, C. W. (1988) Two classes of N-methyl-D-aspartate recognition sites: differential distribution and differential regulation by glycine. Proc. Natl. Acad. Sci. 85, 9836–9840.PubMedCrossRefGoogle Scholar
  50. Monyer, H., Burnashev, N., Laurie, D. J., Sakmann, B., and Seeburg, P. H. (1994) Developmental and regional expression in the rat brain and functional properties of four NMDA receptors. Neuron 12, 529–540.PubMedCrossRefGoogle Scholar
  51. Monyer, H., Sprengel, R., Schoepfer, R., Herb, A., Higuchi, M., Lomeli, H., Burnashev, N., Sakmann, B., and Seeburg, P. H. (1992) Heteromeric NMDA receptors: molecular and functional distinction of subtypes. Science 256, 1217–1221.PubMedCrossRefGoogle Scholar
  52. Mori, H., Masaki, H., Yamakura, T., and Mishina, M. (1992) Identification by mutagenesis of a magnesium block site of the NMDA receptor channel. Nature 358, 673–675.PubMedCrossRefGoogle Scholar
  53. Moriyoshi, K., Masu, M., Ishii, T., Shigemoto, R., Mizuno, N., and Nakanishi S. (1991) Molecular cloning and characterization of the rat NMDA receptor. Nature 354, 31–36.PubMedCrossRefGoogle Scholar
  54. Murphy, S. N., Thayer, S. A., and Miller, R. J. (1987) The effects of excitatory amino acids on intracellular calcium in single mouse striatal neurons in vitro. J. Neurosci. 7,4145–4158.PubMedGoogle Scholar
  55. Paoletti, Neyton, J., and Ascher, P. (1995) Glycine independent and subunit specific potentiation of NMDA responses by extracellular Mg+2. Neuron 15, 1109–1120.PubMedCrossRefGoogle Scholar
  56. Porter, R. H. and Greenamyre, J. T. (1995) Regional variations in the pharmacology of NMDA receptor channel blockers: implications for therapeutic potential. J. Neurochem. 64, 614–623.PubMedCrossRefGoogle Scholar
  57. Pritchett, D. B., Sontheimer, H., Gorman, C. M., Kettenmann, H., Seeburg, P. H., and Schofield, P. R. (1989) Transient expression shows ligand gating and allosteric potentiation of GABAA receptor subunits. Science 242, 1306–1308.CrossRefGoogle Scholar
  58. Rajdev, S. and Reynolds, I. J. (1992) Effects of monovalent and divalent cations on 3(+)-125I-iododizolcipine binding to the N-methyl-D-aspartate receptor of rat brain membranes. J. Neurochem. 58, 1469–1476.PubMedCrossRefGoogle Scholar
  59. Randall, R. D. and Thayer, S. A. (1992) Glutamate-induced calcium transient triggers delayed calcium overload and neurotoxicity in rat hippocampal neurons. J. Neurosci. 12, 1882–1895.PubMedGoogle Scholar
  60. Ransom, R. W. and Deschenes, N. L. (1990) Polyamines regulate glycine interaction with the N-methyl-D-aspartate receptor. Synapse 5, 294–298.PubMedCrossRefGoogle Scholar
  61. Reynolds, I. J. (1990) Arcaine is a competitive antagonist of the polyamine site on the NMDA receptor. Eur. J. Pharmacol. 177, 215,216.Google Scholar
  62. Reynolds, I. J. (1994) [3H]CGP 39653 binding to the agonist site of the N-methyl-D-aspartate receptor is modulated by Mg2+ and polyamines independently of the arcaine-sensitive polyamine site. J. Neurochem. 62, 54–62.PubMedCrossRefGoogle Scholar
  63. Reynolds, I. J., and Miller, R. J. (1989) Ifenprodil is a novel type of N-methyl-D-aspartate receptor antagonist: interaction with polyamines. Mol. Pharmacol. 36, 758–765.PubMedGoogle Scholar
  64. Reynolds, I. J., Murphy, S. N., and Miller, R. J. (1987) [3H]labeled MK-801 binding to the excitatory amino acid receptor complex from rat brain is enhanced by glycine. Proc. Natl. Acad. Sci. USA 84, 7744–7748.PubMedCrossRefGoogle Scholar
  65. Reynolds, I. J. and Palmer, A. M. (1991) Regional variations in 3H-MK801 binding to rat brain N-methyl-D-aspartate receptors. J. Neurochem. 56, 1731–1740.PubMedCrossRefGoogle Scholar
  66. Rock, D. M. and Macdonald, R. L. (1992) The polyamine spermine has multiple actions on N-methyl-D-aspartate receptor single-channel currents in cultured cortical neurons. Mol. Pharmacol. 41, 83–88.PubMedGoogle Scholar
  67. Sacaan, A. I. and Johnson, K. M. (1990) Spermine enhances binding to the glycine site associated with the N-methyl-D-aspartate receptor complex. Mol. Pharmacol. 36, 836–883.Google Scholar
  68. Sakurada, K., Masu, M., and Nakanishi, S. (1993) Alteration of calcium permeability and sensitivity to magnesium and channel blockers by a single amino acid substitution in the N-methyl-D-aspartate receptor. J. Biol. Chem. 268, 410–415.PubMedGoogle Scholar
  69. Sakurai, S. Y., Penney, J. B., and Young, A. B. (1993) Regionally distinct N-methyl-D-aspartate receptors distinguished by quantitative autoradiography of [3H]MK 801 in rat brain. J. Neurochem. 60, 1344–1353.PubMedCrossRefGoogle Scholar
  70. Segal, M. and Manor, D. (1992) Confocal microscopic imaging of [Ca++]. in cultured rat hippocampal neurons following exposure to N-methyl-D-aspartate. J. Physiol. 448, 655–676.PubMedGoogle Scholar
  71. Sheng, M., Cummings, J., Roidan, L. A., Jan, Y. N., and Jan, L. Y. (1994) Changing subunit composition of heteromeric NMDA receptors during development of rat cortex. Nature 368, 144–147.PubMedCrossRefGoogle Scholar
  72. Sine, S. and Claudio T. (1991) Gamma and delta subunits regulate the affinity and the cooperativity of ligand-binding to the acetylcholine receptor. J. Biol. Chem. 266, 19,369–19,377.Google Scholar
  73. Sonders, M. S., Barmettler, P., Lee, J. A., Kitahara, Y., Keana, J. F., and Weber, E. (1990) A novel photoaffinity ligand for the phencyclidine site of the N-methyl-D-aspartate receptor labels a Mr 120,000 polypeptide. J. Biol. Chem. 265, 6776–6781.PubMedGoogle Scholar
  74. Standaert, D., Tesla, C. M., Penney, J. B., and Young, A. B. (1993) Alternately spliced isoforms of the NMDA R1 glutamate receptor subunit: differential expression in the basal ganglia of the rat. Neurosci. Lett. 152, 161–164.PubMedCrossRefGoogle Scholar
  75. Stephenson, F. A., Duggan, M. J., and Pollard, S. (1990) The gamma 2 subunit is an integral component of the gamma aminobutyric acid receptor but the alpha 1 polypeptide is the principal site of the agonist benzodiazepine photoaffinity labelling reaction. J. Biol. Chem. 265, 21,160–21,165.Google Scholar
  76. Subramanian, S. and McGonigle, P. (1991) Quantitative autoradiographic characterization of the binding of (+)-5-methyl-10,11-dihydro-5H-dibenzo[a,d]cyclohepten-5,1-imine ([3H]-MK 801) in rat brain: regional effects of polyamines. J. Pharmacol. Exp. Ther. 256, 814–819.Google Scholar
  77. Sugihara, H., Moriyoshi, K., Ishii, T., Masu, M., and Nakanishi, S. (1992) Structure and properties of 7 isoforms of the NMDA receptor generated by alternative splicing. Biochem. Biophys. Res. Commun. 185, 826–832.PubMedCrossRefGoogle Scholar
  78. Sullivan, J. M., Traynelis, S. F., Chen, H. S., Escobar, W., Heinemann, S. F., and Lipton, S. A. (1994) Identification of two cysteine residues that are required for redox modulation of the NMDA subtype of glutamate receptor. Neuron 13, 929–936.PubMedCrossRefGoogle Scholar
  79. Tymianski, M., Charlton, M. P., Carlen, P. L., and Tator, C. H. (1993) Source specificity of early calcium neurotoxicity in cultured embryonic spinal neurons. J. Neurosci. 13, 2085–2104.PubMedGoogle Scholar
  80. van Amsterdam, F. T., Gilbertyi, A., Mugnaini, M., and Ratti, E. (1992) 3-(+)-2-carboxypiperazin-4-yl propyl-1-phosphonic acid recognizes two N-methyl-D-aspartate binding sites in rat cerebral cortex membranes. J. Neurochem. 59, 1850–1855.PubMedCrossRefGoogle Scholar
  81. Wafford, K. A., Bain, C. J., Le Bourdelles, B., Whiting, P. J., and Kemp, J. A. (1993) Preferential co-assembly of recombinant NMDA receptors composed of three different subunits. Neuroreport. 4, 1347–1349.PubMedCrossRefGoogle Scholar
  82. Wafford, K. A., Kathoria, M., Bain, C. J., Marshall, G., Le Bourdelles, B., Kemp, J. A., and Whiting, P. J. (1995) Identification of amino acids in the N-methyl-D-aspartate receptor NR1 subunit that contribute to the glycine binding site. Mol. Pharmacol. 47, 374–380.PubMedGoogle Scholar
  83. Watanabe, M., Inoue, Y., Sakimura, K., and Mishina, M. (1992) Developmental changes in distribution of NMDA receptor channel subunit mRNAs. Neuroreport 3, 1138–1140.PubMedCrossRefGoogle Scholar
  84. Williams, K. (1993) Ifenprodil discriminates subtypes of the N-methyl-D-aspartate receptor: selectivity and mechanisms at recombinant heteromeric receptors. Mol. Pharmacol. 44, 851–859.PubMedGoogle Scholar
  85. Williams, K. C., Hanna, J., and Molinoff, P. B. (1991) Developmental changes in the sensitivity of the N-methyl-D-aspartate receptor to polyamines. Mol. Pharmacol. 40, 774–782.PubMedGoogle Scholar
  86. Williams, K., Kashiwagi, K., Fukuchi, J., and Igarashi, K. (1995) An acidic amino acid in the N-methyl D-aspartate receptor is important for spermine stimulation. Mol. Pharmacol. 48, 1087–1098.PubMedGoogle Scholar
  87. Williams, K. C., Russell, S. L., Shen, Y. M., and Molinoff, P. B. (1993) Developmental switch in the expression of NMDA receptors occurs in vivo and in vitro. Neuron 10, 267–278.PubMedCrossRefGoogle Scholar
  88. Williams, K. C., Zappia, A. M., Pritchett, D. B., Shen, Y. M., and Molinoff, P. B. (1994) Sensitivity of the N-methyl-D-aspartate receptor to polyamines is controlled by NR2 subunits. Mol. Pharmacol. 45, 803–809.PubMedGoogle Scholar
  89. Yoneda, Y., Suzuki, T., and Ogita, K. (1994) Differential profiles of binding of a radio-labeled agonist and antagonist at a glycine recognition domain on the N-methyl-D-aspartate receptor ionophore complex in rat brain. J. Neurochem. 62, 102–112.PubMedCrossRefGoogle Scholar
  90. Yoneda, Y., Suzuki, T., Ogita, K., and Han, D. (1993) Support for radiolabeling of a glycine recognition domain on the N-methyl-D-aspartate receptor ionophore complex by 5,7-[3H]dichlorokyurenate in rat brain. J. Neurochem. 60, 634–645.PubMedCrossRefGoogle Scholar
  91. Wong, E. H. F., Knight, A. R., and Woodruff, G. N. (1988) [3H]MK-801 labels a site on the N-methyl-D-aspartate receptor channel complex in rat brain membranes. J. Neurochem. 50, 274–281.PubMedCrossRefGoogle Scholar
  92. Zhang, L., Zheng, X., Paupard, M. C., Wang, A. P., Santchi, L., Friedman, L. K., Zukin, R. S., and Bennett, M. V. (1994) Spermine potentiation of recombinant N-methyl-D-aspartate receptors is affected by subunit composition. Proc. Natl. Acad. Sci. USA 91, 10,883–10,887.Google Scholar
  93. Zheng, X., Zhang, L., Durand, G. M., Bennett, M. V., and Zukin, R. S. (1994) Mutagenesis rescues spermine and Zn2+ potentiation of recombinant NMDA receptors. Neuron 12, 811–818.PubMedCrossRefGoogle Scholar

Copyright information

© Humana Press Inc. 1997

Authors and Affiliations

  • David R. Lynch
  • Michael J. Gallagher
  • Shelley J. Lenz
  • Norifusa J. Anegawa
  • Elfrida L. Grant

There are no affiliations available

Personalised recommendations