Skip to main content

The Evolution of Mammalian Platelets

  • Chapter
Thrombopoiesis and Thrombopoietins

Abstract

As described in detail in other chapters of this book, the mammalian platelet is derived from the cytoplasm of megakaryocytes, the only polyploid hemopoietic cell. Polyploid megakaryocytes and their progeny, nonnucleated platelets, are found only in mammals. In all other animal forms, cells involved in hemostasis and blood coagulation are nucleated. The nucleated cells primarily involved in nonmammalian hemostasis are designated thrombocytes to distinguish them from nonnucleated platelets.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Levin J, Bang FB. A description of cellular coagulation in the Limulus. Bull Johns Hopkins Hosp. 1964;115:337–345.

    PubMed  CAS  Google Scholar 

  2. Kenny DM, Belamarich FA, Shepro D. Aggregation of horseshoe crab (Limulus polyphemus) amebocytes and reversible inhibition of aggregation by EDTA. Biol Bull. 1972; 143: 548–567.

    Article  Google Scholar 

  3. Takahashi H, Azumi K, Yokosawa H. Hemocyte aggregation in the solitary ascidian Halocynthia roretzi: plasma factors, magnesium ion, and met-lys-bradykinin induce the aggregation. Biol Bull. 1994; 186:247–253.

    Article  PubMed  CAS  Google Scholar 

  4. Goffinet G, Grégoire C. Coagulocyte alterations in clotting hemolymph of Carausius morosus L. Arch Int Physiol Biochim. 1975; 83: 707–722.

    Article  PubMed  CAS  Google Scholar 

  5. Grégoire C. Haemolymph coagulation in insects and taxonomy. Bull KBelg Inst Nat Wet. 1984; 55: 3–48.

    Google Scholar 

  6. Ravindranath MH. Haemocytes in haemolymph coagulation of arthropods. Biol Rev. 1980; 55: 139–170.

    Article  Google Scholar 

  7. Levin J, Bang FB. The role of endotoxin in the extracellular coagulation of Limulus blood. Bull Johns Hopkins Hosp. 1964; 115: 265–274.

    PubMed  CAS  Google Scholar 

  8. Levin J, Bang FB. Clottable protein in Limulus: its localization and kinetics of its coagulation by endotoxin. Thrombosis Diathesis Haemorrhagia 1968; 19: 186–197.

    CAS  Google Scholar 

  9. Spurling NW. Comparative physiology of blood clotting. Comp Biochem Physiol. 1981; 68 A: 541–548.

    Article  Google Scholar 

  10. Levin J. The role of amebocytes in the blood coagulation mechanism of the horseshoe crab Limulus polyphemus. In: Cohen W (ed). Blood Cells of Marine Invertebrates: Experimental Systems in Cell Biology and Comparative Physiology. New York: Alan R Liss; 1985: 145–163.

    Google Scholar 

  11. Young NS, Levin J, Prendergast RA. An invertebrate coagulation system activated by endotoxin: evidence for enzymatic mediation. J Clin Invest. 1972; 51: 1790–1797.

    Article  PubMed  CAS  Google Scholar 

  12. Ellis AE. Leukocytes and related cells in the plaice. Pleuronectes platessa. J FishBiol. 1976; 8: 143–156.

    Google Scholar 

  13. Ellis AE. The leukocytes of fish: a review. J Fish Biol. 1977; 11: 453–491.

    Article  Google Scholar 

  14. Gardner GR, Yevich PR Studies on the blood morphology of three estuarine cyprinodontiform fishes. J Fish Res Board Can. 1969; 26: 433–447.

    Article  Google Scholar 

  15. Daimon T, Mizuhira V, Takahashi I, Uchida K. The surface connected canalicular system of carp (Cyprinus carpio) thrombocytes: its fine structure and three-dimensional architecture. Cell Tissue Res. 1979; 203: 355–365.

    Article  PubMed  CAS  Google Scholar 

  16. Stenberg PE, Levin J. Mechanisms of platelet production. Blood Cells. 1989; 15: 23–47.

    PubMed  CAS  Google Scholar 

  17. Belamarich FA. Hemostasis in animals other than mammals: the role of cells. In: Spaet TH (ed). Progress in Hemostasis and Thrombosis, vol 3. New York: Grime and Stratton; 1976: 191–209.

    Google Scholar 

  18. Hewson W. On the figure and composition of the red particles of the blood, commonly called the red globules. In: Gulliver G (ed). The Works of William Hewson, F.R.S. London: C and J Adlard, Printers; 1846: 211–244.

    Google Scholar 

  19. Armstrong PB, Rickles FR. Endotoxin-induced degranulation of the Limulus amebocyte. Exp Cell Res. 1982; 140: 15–24.

    Article  PubMed  CAS  Google Scholar 

  20. Dumont JN, Anderson E, Winmer G. Some cytologic characteristics of the hemocytes of Limulus during clotting. J Morphol. 1966; 119: 181–208.

    Article  PubMed  CAS  Google Scholar 

  21. Ornberg RL, Reese TS. Beginning of exocytosis captured by rapid-freezing of Limulus ameb-ocytes. J Cell Biol. 1981; 909: 40–54.

    Article  Google Scholar 

  22. Tablin F, Levin J. The fine structure of the amebocyte in the blood of Limulus polyphemus. II. The amebocyte cytoskeleton: a morphological analysis of native, activated, and endotoxin-stimulatedamebocytes. Biol Bull. 1988; 175:417–429.

    Article  Google Scholar 

  23. Mürer EH, Levin J, Holme R. Isolation and studies of the granules of the amebocytes of Limulus polyphemus, the horseshoe crab. J Cell Physiol. 1975; 86: 533–542.

    Article  PubMed  Google Scholar 

  24. Glynn MF, Movat HZ, Murphy EA, Mustard JF. Study of platelet adhesiveness and aggregation, with latex particles. J Lab Clin Med. 1965; 65: 179–201.

    PubMed  CAS  Google Scholar 

  25. Levin J. Blood coagulation in the horseshoe crab (Limulus polyphemus): a model for mammalian coagulation and hemostasis. In: US Department of Health, Education and Welfare. Animal Models of Thrombosis and Hemorrhagic Diseases. Proceedings of a symposium of the National Academy of Sciences. Washington, DC: DHEW Publication No. (NIH) 76–982; 1976: 87–96.

    Google Scholar 

  26. Lewis JC, Maldonado JE, Mann KG. Phagocytosis in human platelets: localization of acid phosphatase-positive phagosomes following latex uptake. Blood. 1976; 47: 833–840.

    PubMed  CAS  Google Scholar 

  27. Springer GF, Adye JC. Endotoxin-binding substances from human leukocytes and platelets. Infect Immun. 1975; 12: 978–986.

    PubMed  CAS  Google Scholar 

  28. Clawson CC. Platelet interaction with bacteria. III. Ultrastructure. Am J Pathol. 1973; 70: 449–472.

    PubMed  CAS  Google Scholar 

  29. Maclntyre DE, Allen AP, Thorne KJI, Glauert AM, Gordon JL. Endotoxin-induced platelet aggregation and secretion. I. Morphological changes and pharmacological effects. J Cell Sci. 1977;28:211–223.

    Google Scholar 

  30. Levin J. Bleeding with infectious diseases. In: Ratnoff OD, Forbes CD (eds). Disorders of Hemostasis, 3rd ed. Philadelphia: WB Saunders; 1996: 339–356.

    Google Scholar 

  31. Clawson CC. Platelets in bacterial infections. In: Joseph M (ed). Immunopharmacology of Platelets. London: Harcourt Brace; 1995: 83–124.

    Chapter  Google Scholar 

  32. Clawson CC, Rao GHR, White JG. Platelet interaction with bacteria. IV. Stimulation of the release reaction. Am J Pathol. 1975; 81: 411–419.

    PubMed  CAS  Google Scholar 

  33. Hawiger J, Steckley S, Hammond D, et al. Staphylococci-induced human platelet injury mediated by protein A and immunoglobulin G Fc fragment receptor. J Clin Invest. 1979; 64: 931–937.

    Article  PubMed  CAS  Google Scholar 

  34. Zimmerman TS, Spiegelberg HL. Pneumococcus-induced serotonin release from human platelets. Identification of the participating plasma/serum factor as immunoglobulin. J Clin Invest. 1975; 56: 828–834.

    Article  PubMed  CAS  Google Scholar 

  35. Bik T, Sarov I, Livne A. Interaction between vaccinia virus and human blood platelets. Blood. 1982; 59: 482–487.

    PubMed  CAS  Google Scholar 

  36. Sullam PM, Valone FH, Mills J. Mechanisms of platelet aggregation by viridans group streptococci. Infect Immun. 1987; 55: 1743–1750.

    PubMed  CAS  Google Scholar 

  37. Sullam PM, Jarvis GA, Valone FH. Role of immunoglobulin G in platelet aggregation by viridans group streptococci. Infect Immun. 1988; 56: 2907–2911.

    PubMed  CAS  Google Scholar 

  38. Herzberg MC, Brintzenhofe KL, Clawson CC. Aggregation of human platelets and adhesion of Streptococcus sanguis. Infect Immun. 1983; 39: 1457–1469.

    CAS  Google Scholar 

  39. Kurpiewski GE, Forrester LJ, Campbell BJ, Barrett JT. Platelet aggregation by Streptococcus pyogenes. Infect Immun. 1983; 39: 704–708.

    CAS  Google Scholar 

  40. Capron A, Ameisen JC, Joseph M, Auriault C, Tonnel AB, Caen J. New functions for platelets and their pathological implications. Int Arch Allergy Appl Immunol 1985; 77: 107–114.

    Article  PubMed  CAS  Google Scholar 

  41. Pancré V, Auriault C. Platelets in parasitic diseases. In: Joseph M (ed). Immunopharmacology of Platelets. London: Harcourt Brace and Co; 1995: 125–135.

    Chapter  Google Scholar 

  42. Ngaiza JR, Doenhoff MJ. Blood platelets and schistosome egg excretion. Proc Soc Exp Biol Med. 1990; 193: 73–79.

    PubMed  CAS  Google Scholar 

  43. Pancré V, Monté D, Delanoye A, Capron A, Auriault C. Interleukin-6 is the main mediator of the interaction between monocytes and platelets in the killing of Schistosoma mansoni. Eur Cytokine Net. 1990; 1: 15–19.

    Google Scholar 

  44. Lowenhaupt RW, Miller MA, Glueck HI. Platelet migration and Chemotaxis demonstrated in vitro. Thromb Res. 1973; 3: 477–487.

    Google Scholar 

  45. Lowenhaupt RW, Glueck HI, Miller MA, Kline DL. Factors which influence blood platelet migration. J Lab Clin Med. 1977; 90: 37–45.

    PubMed  CAS  Google Scholar 

  46. Armstrong PB. Motility of the Limulus blood cell. J Cell Sci. 1979; 37: 169–180.

    PubMed  CAS  Google Scholar 

  47. Gould SJ. Bushes and ladders in human evolution. In: Ever Since Darwin. Reflections in Natural History. New York: WW Norton and Co; 1977: 56–62.

    Google Scholar 

  48. Gould SJ. The episodic nature of evolutionary change. In: The Panda’s Thumb. More Reflections in Natural History. New York: WW Norton and Co; 1980: 179–185.

    Google Scholar 

  49. Hawkey CM. Comparative Mammalian Haematology. Cellular Components and Blood Coagulation of Captive Wild Animals. London: William Heinemann Medical Books; 1975: 218–227.

    Google Scholar 

  50. Lewis JH, Phillips LL, Hann C. Coagulation and hematological studies in primitive Australian mammals. Comp Biochem Physiol. 1968; 25: 1129–1135.

    Article  PubMed  CAS  Google Scholar 

  51. Whittington RJ, Grant TR. Haematology and blood chemistry of the free-living platypus, Ornithorhynchus anatinus (Shaw) (Monotremata: Ornithorhynchidae). Aust J Zool. 1983; 31: 475–482.

    Article  CAS  Google Scholar 

  52. Canfield PJ, Whittington RJ. Morphological observations on the erythrocytes, leukocytes and platelets of free-living platypuses, Ornithorhynchus anatinus (Shaw) (Monotremata: Ornithorhynchidae). Aust J Zool. 1983; 31: 421–432.

    Article  Google Scholar 

  53. Barbour RA. The leukocytes and platelets of a marsupial, Trichosurus vulpecula. A comparative morphological, metrical, and cytochemical study. Arch HistolJpn. 1972; 34: 311–360.

    CAS  Google Scholar 

  54. Fantl P, Ward HA. Comparison of blood clotting in marsupials and man. Aust J Exp Biol. 1957; 35: 209–224.

    Article  CAS  Google Scholar 

  55. Nakeff A, Ingram M. Platelet count: volume relationships in four mammalian species. J Appl Physiol. 1970; 28: 530–533.

    PubMed  CAS  Google Scholar 

  56. Stenberg PE, Levin J. Ultrastructural analysis of acute immune thrombocytopenia in mice: dissociation between alterations in megakaryocytes and platelets. J Cell Physiol. 1989; 141: 160–169.

    Article  PubMed  CAS  Google Scholar 

  57. Stenberg PE, Levin J, Baker G, Mok Y, Corash L. Neuraminidase-induced thrombocytopenia in mice: effects on thrombopoiesis. J Cell Physiol. 1991; 147: 7–16.

    Article  PubMed  CAS  Google Scholar 

  58. Jackson CW. Cholinesterase as a possible marker for early cells of the megakaryocytic series. Blood. 1973;42:413–421.

    PubMed  CAS  Google Scholar 

  59. Hawkey CM. General summary and conclusions. Symp Zool Soc Lond. 1970; 27: 217–229.

    Google Scholar 

  60. Levin J. The horseshoe crab: a model for gram-negative sepsis in marine organisms and humans. In: Levin J, Buller HR, ten Cate JW, van Deventer SJH, Sturk A (eds). Bacterial Endotoxins. Pathophysiological Effects, Clinical Significance, and Pharmacological Control. New York: Alan R Liss; 1988: 3–15.

    Google Scholar 

  61. Söderhäll K, Levin J, Armstrong PB. The effects of ßl,3-glucans on blood coagulation and amebocyte release in the horseshoe crab, Limulus polyphemus. Biol Bull. 1985; 169: 661–674.

    Google Scholar 

  62. Copeland DE, Levin J. The fine structure of the amebocyte in the blood of Limulus polyphemus. I. Morphology of the normal cell. Biol Bull. 1985; 169: 449–457.

    Article  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Humana Press Inc.

About this chapter

Cite this chapter

Levin, J. (1997). The Evolution of Mammalian Platelets. In: Kuter, D.J., Hunt, P., Sheridan, W., Zucker-Franklin, D. (eds) Thrombopoiesis and Thrombopoietins. Humana Press. https://doi.org/10.1007/978-1-4612-3958-1_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-3958-1_3

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-4612-8440-6

  • Online ISBN: 978-1-4612-3958-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics