Skip to main content

Platelet Structure and Function

  • Chapter
Thrombopoiesis and Thrombopoietins

Abstract

Since this is a publication primarily devoted to thrombopoietin (TPO), the ligand for Mpl, and its effect on platelet production so soon after the discovery of this hormone, it is likely that many observations recorded in this book will need to be modified in the future. This will not hold true for the present chapter, which is meant as an anchor to those who have recently entered the field or who may have forgotten what is considered to be normal platelet structure and function, whether in health, in disease, or during spontaneously accelerated thrombocytopoiesis. Only the most relevant information will be recorded here, namely, the properties of platelets that may be affected by TPO when platelets are exposed to its recombinant form in vivo or in vitro. The reader is referred to an exceptionally large body of literature accumulated over many years to be apprised of further details (1–4). Since many of the studies on Mpl carried out to date have, of necessity, been conducted in vitro or in animals, pitfalls in the interpretation of the results arising from differences among species will also be pointed out.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Zucker-Franklin D. The ultrastructure of megakaryocytes and platelets. In: Gordon AS (ed). Regulation of Hematopoiesis. New York: Appleton-Century-Crofts; 1970: 1553–1586.

    Google Scholar 

  2. Zucker-Franklin D. Megakaryocytes and platelets. In: Zucker-Franklin D, Greaves MF, Grossi CE, Marmont AM (eds). Atlas of Blood Cells, Function and Pathology. Philadelphia: Edi Ermes Milan, Lea & Febiger; 1989: 623–693.

    Google Scholar 

  3. Zucker-Franklin D. Platelet morphology and function. In: Williams WJ, Beutler E, Erslev AJ, Lichtman MA (eds). Hematology. New York: McGraw Hill; 1990: 1172–1181.

    Google Scholar 

  4. White JG. Anatomy and structural organization of the platelet. In: Colman RW, Hirsh J, Marder VJ, Salzman EW (eds). Hemostasis and Thrombosis: Basic principles and clinical practice. Philadelphia: Lippencott; 1994: 397–413.

    Google Scholar 

  5. Turitto VT, Baumgartner HR. Initial deposition of platelets and fibrin on vascular surfaces in flowing blood. In: Colman RW, Hirsh J, Marder VJ, Salzman EW (eds). Hemostasis and Thrombosis: Basic Principles and Clinical Practice. Philadelphia: JB Lippincott; 1994: 805–822.

    Google Scholar 

  6. Zucker-Franklin D, Petursson S. Thrombocytopoiesis-analysis by membrane tracer and freeze-fracture studies on fresh human and cultured mouse megakaryocytes. J Cell Biol. 1984; 99: 390–402.

    Article  PubMed  CAS  Google Scholar 

  7. Zucker-Franklin D, Rosenberg L. Platelet interaction with modified articular cartilage. Its possible relevance to joint repair. J Clin Invest. 1977; 59: 641–651.

    Article  PubMed  CAS  Google Scholar 

  8. Zucker-Franklin D, Rosenberg L. Platelet interaction with cartilage: the role of proteoglycans in vitro and in vivo. Suppl Thromb Haemost (Germany, West). 1978; 68: 321–333.

    Google Scholar 

  9. Peerschke EI. Stabilization of platelet-fibrinogen interactions is an integral property of the glycoprotein IIb-IIIa complex. J Lab Clin Med. 1994; 124: 439–446.

    PubMed  CAS  Google Scholar 

  10. Morgenstern E, Edelmann L, Reimers HJ, Miyashita C, Haurand M. Fibrinogen distribution on surfaces and in organelles of ADP stimulated human blood platelets. Eur J Cell Biol. 1985; 38:292–300.

    PubMed  CAS  Google Scholar 

  11. Mustard JF, Kinlough-Rathbone RL, Packham MA, Perry DW, Harfenist EJ, Pai KR. Comparison of fibrinogen association with normal and thrombasthenic platelets on exposure to ADP or chymotrypsin. Blood. 1979; 54: 987–993.

    PubMed  CAS  Google Scholar 

  12. Ware JA, Coller BS. Platelet morphology, biochemistry and function. In: Beutler E, Williams WJ (eds). Hematology. New York: McGraw Hill; 1995: 1161–1201.

    Google Scholar 

  13. Debili N, Wendling F, Cosman D, et al. The Mpl receptor is expressed in the megakaryocytc lineage from late progenitors to platelets. Blood. 1995; 85: 391–401.

    PubMed  CAS  Google Scholar 

  14. Handagama P, Scarborough RM, Shuman MA, Bainton DF. Endocytosis of fibrinogen into megakaryocyte and platelet a-granules is mediated by aIIbb3 (Glycoprotein Ilb-IIIa). Blood. 1993; 82: 135–138.

    PubMed  CAS  Google Scholar 

  15. George JN. Platelet immunoglobulin G: Its significance for the evaluation of thrombocytopenia and for understanding the origin of a-granule proteins. Blood. 1990; 76: 859–870.

    PubMed  CAS  Google Scholar 

  16. Cramer EM, Meyer D, le Menn R, Breton-Gorius J. Eccentric localization of von Willebrand Factor in an internal structure of platelet a-granule resembling that of Weibel-Palade bodies. Blood. 1985;66:710–713.

    PubMed  CAS  Google Scholar 

  17. Stenberg PE, McEver RP, Shuman MA, Jacques YV, Bainton DF. A platelet alpha-granule membrane protein (GMP-140) is expressed on the plasma membrane after activation. J Cell Biol. 1985; 101:880–886.

    Article  PubMed  CAS  Google Scholar 

  18. Da Prada M, Pletscher A, Tranzer JP, Knuchel H. Subcellular localization of 5-hydroxytryptamine and histamine in blood platelets. Nature. 1967; 216: 1315–1317.

    Article  PubMed  Google Scholar 

  19. Davis RB, White JG. Localization of 5-hydroxytryptamine in blood platelets: an autoradiographic and ultrastructural study. Br J Haematol. 1968; 15: 93–99.

    Article  PubMed  CAS  Google Scholar 

  20. Martin JH, Carson FL, Race GJ. Calcium-containing platelet granules. J Cell Biol 1974; 60: 775–777.

    Article  PubMed  CAS  Google Scholar 

  21. White JG, Gerrard JM. Ultrastructural features of abnormal blood platelets. A review. Am J Pathol 1976; 83: 589–632.

    PubMed  CAS  Google Scholar 

  22. Marcus AJ, Zucker-Franklin D, Safier LB, Ullman HL. Studies on human platelet granules and membranes. J Clin Invest. 1966; 45: 14–28.

    Article  PubMed  CAS  Google Scholar 

  23. Bentfeld-Barker ME, Bainton DF. Identification of primary lysosomes in human megakaryocytes and platelets. Blood. 1982; 59: 472–481.

    PubMed  CAS  Google Scholar 

  24. Zucker-Franklin D. Endocytosis by human platelets: Metabolic and freeze-fracture studies. J Cell Biol. 1981;91:706–715.

    Article  PubMed  CAS  Google Scholar 

  25. Naehmias V, Sullender J, Asch A. Shape and cytoplasmic filaments in control and lidocaine-treated human platelets. Blood. 1977; 50: 39–53.

    Google Scholar 

  26. Breton-Gorius J, Guichard J. Ultrastructural localization of peroxidase activity in human platelets and megakaryocytes. Am J Pathol. 1972; 66: 277–293.

    PubMed  CAS  Google Scholar 

  27. Gerrard JM, White JG, Rao GH, Townsend D. Localization of platelet prostaglandin production in the platelet dense tubular system. Am J Pathol. 1976; 83: 283–298.

    PubMed  CAS  Google Scholar 

  28. White JG. Is the canalicular system the equivalent of the muscle sarcoplasmic reticulum? He-mostasis. 1975; 4: 185.

    Google Scholar 

  29. Zucker-Franklin D. The relationship of alpha granules to the membrane systems of platelets and megakaryocytes. Blood Cells. 1989; 15: 73–79.

    PubMed  CAS  Google Scholar 

  30. Rash JE, Hudson C (eds). Freeze-Fracture: Methods, Artifacts and Interpretations. New York: Raven; 1979.

    Google Scholar 

  31. Pinto da Silva P, Branton D. Membrane splitting in freeze-etching. Covalently bound ferritin as a membrane marker. J Cell Biol 1970; 45: 598–605.

    Article  PubMed  CAS  Google Scholar 

  32. Pinto da Silva P, Douglas SD, Branton D. Localization of A antigen sites on human erythrocyte ghosts. Nature. 1971; 232: 194–196.

    Article  PubMed  CAS  Google Scholar 

  33. Lichtman MA, Chamberlain JK, Simon W, Santillo PA. Parasinusoidal location of megakaryocytes in marrow: a determinant of platelet release. Am J Hematol. 1978; 4: 303–312.

    Article  PubMed  CAS  Google Scholar 

  34. Tavassoli M, Aoki M. Migration of entire megakaryocytes through the marrow-blood barrier. Br J Haematol. 1981; 48: 25–29.

    Article  PubMed  CAS  Google Scholar 

  35. Melamed MR, Cliffton EE, Mercer C, Koss LG. The megakaryocyte blood count. Am J Med Sci. 1966;252:301–309.

    CAS  Google Scholar 

  36. Kaufman RM, Airo R, Pollack S, Crosby WH. Circulating megakaryocytes and platelets released in the lung. Blood. 1965; 26: 720–731.

    PubMed  CAS  Google Scholar 

  37. Trowbridge EA, Martin JF, Slater DN. Evidence for a theory of physical fragmentation of megakaryocytes implying that all platelets are produced in the pulmonary circulation. Thromb Res. 1982; 28: 461–75.

    Article  PubMed  CAS  Google Scholar 

  38. Levine RF, Eldor A, Shoff PK, Kirwin S, Tenza D, Cramer EM. Circulating megakaryocytes: Delivery of large numbers of intact, mature megakaryocytes to the lungs. Eur J Haematol. 1993;51:233–246.

    Article  PubMed  CAS  Google Scholar 

  39. Zucker-Franklin D, Termin CS, Cooper MC. Structural changes in the megakaryocytes of patients infected with the human immune deficiency virus (HIV-I). Am J Pathol. 1989; 134: 1295–1303.

    PubMed  CAS  Google Scholar 

  40. Detwiler TC, Odell TT, McDonald TP. Platelet size, ATP content, and clot retraction in relation to platelet age. Am J Physiol. 1962; 203: 107–110.

    PubMed  CAS  Google Scholar 

  41. Johnson CA, Abildgaard CF, Schulman I. Functional studies of young versus old platelets in a patient with chronic thrombocytopenia. Blood. 1971; 37: 163–171.

    Google Scholar 

  42. Murphy S, Oski FA, Naiman JL, Lusch CJ, Goldberg S, Gardner FH. Platelet size and kinetics in hereditary and acquired thrombocytopenia. N Engl J Med. 1972; 286: 499–504.

    Article  PubMed  CAS  Google Scholar 

  43. Thompson CB, Jakubowski JA, Quinn PG, Deykin D, Valeri CR. Platelet size and age determine platelet function independently. Blood. 1984; 63: 1372–1375.

    PubMed  CAS  Google Scholar 

  44. Corash L, Chen HY, Levin J, Baker G, Lu H, Mok Y Regulation of thrombopoiesis: effects of the degree of thrombocytopenia on megakaryocyte ploidy and platelet volume. Blood. 1987; 70: 177–185.

    PubMed  CAS  Google Scholar 

  45. Kunicki TJ. Role of platelets in hemostasis. In: Rossi EC, Simon TL, Moss GS (eds). Principles of Transfusion Medicine. Baltimore, MD: Williams & Wilkins; 1991: 181–192.

    Google Scholar 

  46. Herceg-Harjacek L, Groopman JE, Grabarek J. Thrombopoietin induces fibrinogen-mediated platelet-endothelial cell interaction. Blood. 1995; 86: 84a (abstract no 323).

    Google Scholar 

  47. Ault KA, Mitchell J, Knowles C. Recombinant human thrombopoietin augments spontaneous and ADP induced platelet activation both in vitro and in vivo. Blood. 1995; 86:367a (abstract no 1456).

    Google Scholar 

  48. Ault KA. Flow cytometric measurement of platelet function and reticulated platelets. Ann NY Acad Sci. 1993; 677: 293–308.

    Article  PubMed  CAS  Google Scholar 

  49. Kaplan KL. Laboratory markers of platelet activation. In: Colman RW, Hirsh S, Marder VJ, Salzman EW (eds). Hemostasis and Thrombosis: Basic Principles and Clinical Practice. Philadelphia: Lippincott; 1994: 1180–1196.

    Google Scholar 

  50. Metzelaar MJ, Korteweg J, Sixma J J, Nieuwenhuis HK. Comparison of platelet membrane markers for the detection of platelet activation in vitro and during platelet storage and cardiopulmonary bypass surgery. J Lab Clin Med. 1993; 121: 579–587.

    PubMed  CAS  Google Scholar 

  51. Harker LA, Hunt P, Marzec UM et al. Dose response effect of pegylated human megakaryocyte growth and development factor (PEG-rHuMGDF) on platelet production and function in non-human primates. Blood. 1995; 86: 256a (abstract no 1012).

    Google Scholar 

  52. Berman CL, Yeo EL, Wencel-Drake JD, Furie BC, Ginsberg MH, Furie B. A platelet alpha-granule membrane protein that is associated with the plasma membrane after activation. Characterization and subcellular localization of platelet activation-dependent granule-external membrane protein. J Clin Invest. 1986; 78: 130–137.

    Article  PubMed  CAS  Google Scholar 

  53. Isenberg WM, McEver RP, Shuman MA, Bainton DF. Topographic distribution of a granule membrane protein (GMP-140) that is expressed on the platelet surface after activation: An immunogold-surface replica study. Blood Cells. 1986; 12: 191–204.

    PubMed  CAS  Google Scholar 

  54. Zucker-Franklin D. Microfibrils of blood platelets: their relationship to microtubules and the contractile protein. J Clin Invest. 1969; 48: 165–175.

    Article  PubMed  CAS  Google Scholar 

  55. White JG, Rao GH. Influence of a microtubule stabilizing agent on platelet structural physiology. Am J Pathol. 1983; 112: 207–217.

    PubMed  CAS  Google Scholar 

  56. Zucker-Franklin D, Hirsch JG. Electron microscope studies on the degranulation of polymorphonuclear leukocytes during phagocytosis. J Exp Med. 1964; 120: 569–576.

    Article  PubMed  CAS  Google Scholar 

  57. Zucker-Franklin D, Benson KA, Myers KM. Absence of surface-connected canalicular system in bovine platelets. Blood. 1985; 65: 241–244.

    PubMed  CAS  Google Scholar 

  58. Zucker-Franklin D, Grusky G. The actin and myosin filaments of human and bovine blood platelets. J Clin Invest. 1972; 51: 419–430.

    Article  PubMed  CAS  Google Scholar 

  59. Zucker-Frankln D, Nachman RL, Marcus AJ. Ultrastructure of thrombosthenin, the contractile protein of human blood platelets. Science. 1967; 157: 945–946.

    Article  Google Scholar 

  60. Zucker-Franklin D. The submembranous fibrils of human blood platelets. J Cell Biol. 1970; 47: 293–299.

    Article  PubMed  CAS  Google Scholar 

  61. Schick PK, Konkle BA, He X, Thornton RD. P-selectin mRNA is expressed at a later phase of megakaryocyte maturation than mRNA for von Willebrand factor and glycoprotein lb-alpha. J Lab Clin Med. 1993; 121: 714–721.

    PubMed  CAS  Google Scholar 

  62. Khan I, Zucker-Franklin D, Karpatkin S. Microthrombocytosis and platelet fragmentation associated with idiopathic/autoimmune thrombocytopenic purpura. Br J Haematol. 1975; 31: 449–460.

    Article  PubMed  CAS  Google Scholar 

  63. Zucker-Franklin D, Karpatkin S. Red-cell and platelet fragmentation in idiopathic autoimmune thrombocytopenia purpura. N Engl J Med. 1977; 297: 517–523.

    Article  PubMed  CAS  Google Scholar 

  64. Zucker-Franklin D. Clinical significance of platelet microparticles. J Lab Clin Med. 1992; 119: 321–322.

    PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Humana Press Inc.

About this chapter

Cite this chapter

Zucker-Franklin, D. (1997). Platelet Structure and Function. In: Kuter, D.J., Hunt, P., Sheridan, W., Zucker-Franklin, D. (eds) Thrombopoiesis and Thrombopoietins. Humana Press. https://doi.org/10.1007/978-1-4612-3958-1_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-3958-1_2

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-4612-8440-6

  • Online ISBN: 978-1-4612-3958-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics