The Thrombopoietin Receptor, Mpl, and Signal Transduction

  • Kenneth Kaushansky
  • Virginia C. Broudy
  • Jonathan G. Drachman


The recent identification and characterization of the c-mpl proto-oncogene set off an explosive wave of research that has advanced our understanding of megakaryocyte and platelet biology immensely. The mechanisms by which this member of the hemopoietic cytokine receptor family promotes the survival, proliferation, and differentiation of megakaryocytic progenitors resulting in platelet production will require many years, if not decades, to unravel completely. However, important insights into this process have already been achieved, and will be reviewed in this chapter.


Tyrosine Phosphorylation Cytokine Receptor Hemopoietic Cell Erythropoietin Receptor Induce Tyrosine Phosphorylation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Wendling F, Varlet P, Charon M, Tambourin P. MPLV: a retrovirus complex inducing an acute myeloproliferative leukemic disorder in mice. Virology. 1986; 149: 242–246.PubMedCrossRefGoogle Scholar
  2. 2.
    Souyri M, Vigon I, Penciolelli JF, Heard JM, Tambourin P, Wendling F. A putative truncated cytokine receptor gene transduced by the myeloproliferative leukemia virus immortalizes hematopoietic progenitors. Cell. 1990; 63: 1137–1147.PubMedCrossRefGoogle Scholar
  3. 3.
    Vigon I, Mornon JP, Cocault L, et al. Molecular cloning and characterization of MPL, the human homolog of the v-mpl oncogene: identification of a member of the hematopoietic growth factor receptor superfamily. Proc Natl Acad Sci USA. 1992; 89: 5640–5644.PubMedCrossRefGoogle Scholar
  4. 4.
    Skoda RC, Seldin DC, Chiang MK, Peichel CL, Vogt TF, Leder P. Murine c-mpl: a member of the hematopoietic growth factor receptor superfamily that transduces a proliferative signal. EMBO J. 1993; 12: 2645–2653.PubMedGoogle Scholar
  5. 5.
    Vigon I, Florindo C, Fichelson S, et al. Characterization of the murine Mpl proto-oncogene, a member of the hematopoietic cytokine receptor family: molecular cloning, chromosomal location and evidence for a function in cell growth. Oncogene. 1993; 8: 2607–2615.PubMedGoogle Scholar
  6. 6.
    Martin P, Papayannopoulou T. HEL cells: a new human erythroleukemia cell line with spontaneous and induced globin expression. Science. 1982; 216: 1233–1235.PubMedCrossRefGoogle Scholar
  7. 7.
    Long MW, Heffner CH, Williams JL, Peters C, Prochownik EV. Regulation of megakaryocyte phenotype in human erythroleukemia cells. J Clin Invest. 1990; 85: 1072–1084.PubMedCrossRefGoogle Scholar
  8. 8.
    Hong Y, Martin JF, Vainchenker W, Erusalimsky JD. Inhibition of Protein Kinase C suppresses megakaryocytic differentiation and stimulates erythroid differentiation in HEL cells. Blood. 1994; 87: 123–131.Google Scholar
  9. 9.
    Methia N, Louache F, Vainchenker W, Wendling F. Oligodeoxynucleotides antisense to the proto-oncogene c-mpl specifically inhibit in vitro megakaryocytopoiesis. Blood. 1993; 82: 1395–1401.PubMedGoogle Scholar
  10. 10.
    Vigon I, Dreyfus F, Melle J, et al. Expression of the c-mpl proto-oncogene in human hematologic malignancies. Blood. 1993; 82: 877–883.PubMedGoogle Scholar
  11. 11.
    Matsumura I, Kanakura Y, Kato T, et al. Growth response of acute myeloblasts leukemia cells to recombinant human thrombopoietin. Blood. 1995; 86: 703–709.PubMedGoogle Scholar
  12. 12.
    Berardi AC, Wang A, Levine JD, Lopez P, Scadden DT. Functional isolation and characterization of human hematopoietic stem cells. Science. 1995; 267: 104–108.PubMedCrossRefGoogle Scholar
  13. 13.
    Debili N, Wendling F, Cosman D, et al. The mpl receptor is expressed in the megakaryocytic lineage from late progenitors to platelets. Blood. 1995; 85: 391–401.PubMedGoogle Scholar
  14. 14.
    Wolf NS, Kone A, Priestley GV, Bartelmez SH. In vivo and in vitro characterization of long-term repopulating primitive hematopoietic cells isolated by sequential Hoechst 33342-rhodamine 123 FACS selection. Exp Hematol. 1993; 21: 614–622.PubMedGoogle Scholar
  15. 15.
    Sitnicka E, Lin N, Priestley GV, et al. The effect of thrombopoietin on the proliferation and differentiation of murine hematopoietic stem cells. Blood. 1995; 86: 419a (abstract no 1664).Google Scholar
  16. 16.
    Kobayashi M, Laver JH, Kato T, Miyazaki H, Ogawa M. Recombinant human thrombopoietin (mpl ligand) enhances proliferation of erythroid progenitors. Blood. 1995; 86: 2494–2499.PubMedGoogle Scholar
  17. 17.
    Bazan JF. Structural design and molecular evolution of a cytokine receptor superfamily. Proc Natl Acad Sci USA. 1990; 87: 6934–6938.PubMedCrossRefGoogle Scholar
  18. 18.
    Cosman D. The hematopoietin receptor superfamily. Cytokine. 1993; 5: 95–106.PubMedCrossRefGoogle Scholar
  19. 19.
    Wells JA. Binding in the growth hormone receptor complex. Proc Natl Acad Sci USA. 1996; 93: 1–6.PubMedCrossRefGoogle Scholar
  20. 20.
    Alexander WS, Dunn AR. Structure and transcription of the genomic locus encoding murine c-Mpl, a receptor for thrombopoietin. Oncogene. 1995; 10: 795–803.PubMedGoogle Scholar
  21. 21.
    Kiladjian JJ, Hetet G, Briere J, Grandchamp B, Gardin C. New mRNA isoforms of the c-mpl receptor in human platelets. Blood. 1995; 86: 366a (abstract no 1451).Google Scholar
  22. 22.
    Lofton-Day C, Buddie M, Berry J, Lok S. Differential binding of murine thrombopoietin to two isoforms of murine c-mpl. Blood. 1995; 86: 594a (abstract no 2362).Google Scholar
  23. 23.
    Kaushansky K, Broudy VC, Lin N, et al. Thrombopoietin, the Mpl-ligand, is essential for full megakaryocyte development. Proc Natl Acad Sci USA. 1995; 92: 3234–3238.PubMedCrossRefGoogle Scholar
  24. 24.
    Lok S, Kaushansky K, Holly RD, et al. Cloning and expression of murine thrombopoietin cDNA and Stimulation of platelet production in vivo. Nature. 1994; 369: 565–568.PubMedCrossRefGoogle Scholar
  25. 25.
    Ishibashi T, Kimura H, Uchida T, Kariyone S, Friese P, Burstein SA. Human interleukin 6 is a direct promoter of maturation of megakaryocytes in vitro. Proc Natl Acad Sci USA. 1989; 86: 5953–5957.PubMedCrossRefGoogle Scholar
  26. 26.
    Burstein SA, Mei RL, Henthorn J, Friese P, Turner K. Leukemia inhibitory factor and interleukin-11 promote maturation of murine and human megakaryocytes in vitro. J Cell Physiol. 1992; 153:305–312.PubMedCrossRefGoogle Scholar
  27. 27.
    Wallace PM, MacMaster JF, Rillema JR, Peng J, Burstein SA, Shoyab M. Thrombocytopoietic properties of oncostatin M. Blood. 1995; 86: 1310–1315.PubMedGoogle Scholar
  28. 28.
    Kishimoto T, Akira S, Narazaki M, Taga T. Interleukin-6 family of cytokines and gp130. Blood. 1995; 86: 1243–1254.PubMedGoogle Scholar
  29. 29.
    Saito M, Yoshida K, Hibi M, Taga T, Kishimoto T. Molecular cloning of a murine IL-6 receptor-associated signal transducer, gp130, and its regulated expression in vivo. J Immunol. 1992; 148:4066–4071.PubMedGoogle Scholar
  30. 30.
    Broudy VC, Lin N, Fox N, Taga T, Saito M, Kaushansky K. Thrombopoietin stimulates CFU-Meg proliferation and megakaryocyte maturation independently of cytokines that signal through the gp130 receptor subunit. Blood. 1996 (in press).Google Scholar
  31. 31.
    Segal GM, Stueve T, Adamson JW. Analysis of murine megakaryocyte colony size and ploidy: effects of interleukin-3. J Cell Physiol. 1988; 137: 537–544.PubMedCrossRefGoogle Scholar
  32. 32.
    Miyajima A, Mui AL, Ogorochi T, Sakamaki K. Receptors for granulocyte-macrophage colony-stimulating factor, interleukin-3 and interleukin-5. Blood. 1993; 82: 1960–1974.PubMedGoogle Scholar
  33. 33.
    Broudy VC, Lin NL, Kaushansky K. Thrombopoietin (c-mpl ligand) acts synergistically with erythropoietin, stem cell factor, and interleukin-11 to enhance murine megakaryocyte colony growth and increases megakaryocyte ploidy in vitro. Blood. 1995; 85: 1719–1726.PubMedGoogle Scholar
  34. 34.
    Kaushansky K, Broudy VC, Grossmann A, et al. Thrombopoietin expands erythroid progenitors, increases red cell production, and enhances erythroid recovery after myelosuppressive therapy. J Clin Invest. 1995; 96: 1683–1687.PubMedCrossRefGoogle Scholar
  35. 35.
    Ulich TR, del Castillo J, Yin S, et al. Megakaryocyte growth and development factor ameliorates carboplatin-induced thrombocytopenia in mice. Blood. 1995; 86: 911–916.Google Scholar
  36. 36.
    Watowich SS, Yoshimura A, Longmore GD, Hilton DJ, Yoshimura Y, Lodish HF. Homodimerization and constitutive activation of the erythropoietin receptor. Proc Natl Acad Sci USA. 1992; 89: 2140–2144.PubMedCrossRefGoogle Scholar
  37. 37.
    de Sauvage FJ, Hass PE, Spencer SD, et al. Stimulation of megakaryocytopoiesis and throm-bopoiesis by the c-Mpl ligand. Nature. 1994; 369: 533–538.PubMedCrossRefGoogle Scholar
  38. 38.
    Broudy VC, Lin N, Fox N, Atkins H, Iscove N, Kaushansky K. Hematopoietic cells display high affinity receptors for thrombopoietin. Blood. 1995; 86: 593a (abstract no 2361).Google Scholar
  39. 39.
    Bartley TD, Bogenberger J, Hunt P, et al. Identification and cloning of a megakaryocyte growth and development factor that is a ligand for the cytokine receptor Mpl. Cell. 1994; 77: 1117–1124.PubMedCrossRefGoogle Scholar
  40. 40.
    B’enit L, Courtois G, Charon M, Varlet P, Dusanter-Fourt I, Gisselbrecht S. Characterization of mpl cytoplasmic domain sequences required for myeloproliferative leukemia virus pathogenicity. J Virol. 1994; 68: 5270–5274.Google Scholar
  41. 41.
    Mignotte V, Vigon I, Boucher de Crevecoeur E, Roméo PH, Lemarchandel V, Chrétien S. Structure and transcription of the human c-mpl gene (MPL). Genomics. 1994; 20: 5–12.PubMedCrossRefGoogle Scholar
  42. 42.
    Murakami M, Narazaki M, Hibi M, et al. Critical cytoplasmic region of the interleukin 6 signal transducer gp130 is conserved in the cytokine receptor family. Proc Natl Acad Sci USA. 1991; 88:11,349–11,353.Google Scholar
  43. 43.
    Sakamaki K, Miyajima I, Kitamura T, Miyajima A. Critical cytoplasmic domains of the common beta subunit of the human GM-CSF, IL-3 and IL-5 receptors for growth signal transduction and tyrosine phosphorylation. EMBO J. 1992; 11: 3541–3549.PubMedGoogle Scholar
  44. 44.
    Ihle JN, Witthuhn B, Tang B, Yi T, Quelle FW. Cytokine receptors and signal transduction. Baillieres Clin Haematol. 1994; 7: 17–48.PubMedCrossRefGoogle Scholar
  45. 45.
    Ihle JN. Cytokine receptor signalling. Nature. 1995; 377: 591–594.PubMedCrossRefGoogle Scholar
  46. 46.
    Gurney AL, Wong SC, Henzel WJ, de Sauvage FJ. Distinct regions of c-Mpl cytoplasmic domain are coupled to the JAK-STAT signal transduction pathway and She phosphorylation. Proc Natl Acad Sci USA. 1995; 92: 5292–5296.PubMedCrossRefGoogle Scholar
  47. 47.
    Sato N, Sakamaki K, Terada N, Aral K, Miyajima A. Signal transduction by the high-affinity GM-CSF receptor: two distinct cytoplasmic regions of the common beta subunit responsible for different signaling. EMBO J. 1993; 12:4181–4189.PubMedGoogle Scholar
  48. 48.
    Inhorn RC, Carlesso N, Durstin M, Frank DA, Griffin JD. Identification of a viability domain in the granulocyte/macrophage colony-stimulating factor receptor beta-chain involving tyrosine-750. Proc Natl Acad Sci USA. 1995; 92: 8665–8669.PubMedCrossRefGoogle Scholar
  49. 49.
    Fukunaga R, Ishizaka-Ikeda IE, Nagata S. Growth and differentiation signals mediated by different regions in the cytoplasmic domain of granulocyte colony-stimulating factor receptor. Cell. 1993; 74: 1079–1087.PubMedCrossRefGoogle Scholar
  50. 50.
    Baumann H, Gearing D, Ziegler SF. Signaling by the cytoplasmic domain of hematopoietin receptors involves two distinguishable mechanisms in hepatic cells. J Biol Chem. 1994; 269: 16297–16304.PubMedGoogle Scholar
  51. 51.
    Baumann H, Symes AJ, Comeau MR, et al. Multiple regions within the cytoplasmic domains of the leukemia inhibitory factor receptor and gp130 cooperate in signal transduction in hepatic and neuronal cells. Mol Cell Biol. 1994; 14: 138–146.PubMedGoogle Scholar
  52. 52.
    D’Andrea AD, Yoshimura A, Youssoufian H, Zon LI, Koo JW, Lodish HF. The cytoplasmic region of the erythropoietin receptor contains nonoverlapping positive and negative growth-regulatory domains. Mol Cell Biol. 1991; 11: 1980–1987.PubMedGoogle Scholar
  53. 53.
    de la Chapelle A, Traskelin AL, Juvonen E. Truncated erythropoietin receptor causes dominantly inherited benign human erythrocytosis. Proc Natl Acad Sci USA. 1993; 90: 4495–4499.PubMedCrossRefGoogle Scholar
  54. 54.
    Tauchi T, Feng GS, Shen R, et al. Involvement of SH2-containing phosphotyrosine phosphatase Syp in erythropoietin receptor signal transduction pathways. J Biol Chem. 1995; 270: 5631–5635.PubMedCrossRefGoogle Scholar
  55. 55.
    Klingmuller U, Lorenz U, Cantley LC, Neel BG, Lodish HF. Specific recruitment of SH-PTP1 to the erythropoietin receptor causes inactivation of JAK2 and termination of proliferative signals. Cell. 1995; 80: 729–738.PubMedCrossRefGoogle Scholar
  56. 56.
    Miyajima A, Mui AL, Ogorochi T, Sakamaki K. Receptors for granulocyte-macrophage colony-stimulating factor, interleukin-3, and interleukin-5. Blood. 1993; 82: 1960–1974.PubMedGoogle Scholar
  57. 57.
    Drachman JG, Griffin JD, Kaushansky K. The c-Mpl ligand (thrombopoietin) stimulates tyrosine phosphorylation of Jak2, She, and c-Mpl. J Biol Chem. 1995; 270: 4979–4982.PubMedCrossRefGoogle Scholar
  58. 58.
    Dorsch M, Fan PD, Bogenberger J, Goff SP. TPO and IL-3 induce overlapping but distinct protein tyrosine phosphorylation in a myeloid precursor cell line. Biochem Biophys Res Commun. 1995;214:424–431.PubMedCrossRefGoogle Scholar
  59. 59.
    Mu SX, Xia M, Elliot G, et al. Megakaryocyte growth and development factor and interleukin-3 induce patterns of protein-tyrosine phosphorylation that correlate with dominant differentiation over proliferation of mpl-transfected 32D cells. Blood. 1995; 86: 4532–4543.PubMedGoogle Scholar
  60. 60.
    Pallard C, Gouilleux F, Bénit L, et al. Thrombopoietin activates a STAT5-like factor in hematopoietic cells. EMBO J. 1995; 14: 2847–2856.PubMedGoogle Scholar
  61. 61.
    Sasaki K, Odai H, Hanazono Y, et al. TPO/c-mpl ligand induces tyrosine phosphorylation of multiple cellular proteins including proto-oncogene products, Vav and c-Cbl, and Ras signaling molecules. Biochem Biophys Res Commun. 1995; 216: 338–347.PubMedCrossRefGoogle Scholar
  62. 62.
    Ezumi Y, Takayama H, Okuma M. Thrombopoietin, c-Mpl ligand, induces tyrosine phosphorylation of Tyk2, JAK2, and STAT3, and enhances agonists-induced aggregation in platelets in vitro. FEBS Lett. 1995; 374: 48–52.PubMedCrossRefGoogle Scholar
  63. 63.
    Miyakawa Y, Oda A, Druker BJ, et al. Recombinant thrombopoietin induces rapid protein tyrosine phosphorylation of Janus kinase 2 and She in human blood platelets. Blood. 1995; 86: 23–27.PubMedGoogle Scholar
  64. 64.
    Izuhara K, Harada N. Interleukin-4 (IL-4) induces protein tyrosine phosphorylation of the IL-4 receptor and association of phosphatidylinositol 3-kinase to the IL-4 receptor in a mouse T cell line, HT2. J Biol Chem. 1993; 268: 13097–13102.PubMedGoogle Scholar
  65. 65.
    Miyakawa Y, Oda A, Druker BJ, et al. Thrombopoietin induces tyrosine phosphorylation of Stat3 and Stat5 in human blood platelets. Blood. 1996; 87: 439–446.PubMedGoogle Scholar
  66. 66.
    Sattler M, Durstin MA, Frank DA, et al. The thrombopoietin receptor c-MPL activates JAK2 and TYK2 tyrosine kinases. Exp Hematol. 1995; 23: 1040–1048.PubMedGoogle Scholar
  67. 67.
    Tortolani PJ, Johnston JA, Bacon CM, et al. Thrombopoietin induces tyrosine phosphorylation and activation of the Janus kinase, JAK2. Blood. 1995; 85: 3444–3451.PubMedGoogle Scholar
  68. 68.
    Darnell JE Jr, Kerr IM, Stark GR. Jak-STAT pathways and transcriptional activation in response to IFNs and other extracellular signaling proteins. Science. 1994; 264: 1415–1421.PubMedCrossRefGoogle Scholar
  69. 69.
    Shuai K, Horvath CM, Huang LH, Qureshi SA, Cowburn D, Darnell JE Jr. Interferon activation of the transcription factor Stat91 involves dimerization through SH2-phosphotyrosyl peptide interactions. Cell. 1994; 76: 821–828.PubMedCrossRefGoogle Scholar
  70. 70.
    Heim MH, Kerr IM, Stark GR, Darnell JE Jr. Contribution of STAT SH2 groups to specific interferon signaling by the Jak-STAT pathway. Science. 1995; 267: 1347–1349.PubMedCrossRefGoogle Scholar
  71. 71.
    Bacon CM, Tortolani PJ, Shimosaka A, Rees RC, Longo DL, O’Shea J J. Thrombopoietin (TPO) induces tyrosine phosphorylation and activation of STAT5 and STAT3. FEBS Lett. 1995; 370: 63–68.PubMedCrossRefGoogle Scholar
  72. 72.
    Mui AL, Wakao H, O’Farrell AM, Harada N, Miyajima A. Interleukin-3, granulocyte-macrophage colony stimulating factor and interleukin-5 transduce signals through two STAT5 homologs. EMBO J. 1995; 14: 1166–1175.PubMedGoogle Scholar
  73. 73.
    Pallard C, Gouilleux F, Charon M, Groner B, Gisselbrecht S, Dusanter-Fourt I. Interleukin-3, erythropoietin, and prolactin activate a STAT5-like factor in lymphoid cells. J Biol Chem. 1995; 270: 15,942–15,945.Google Scholar
  74. 74.
    Downward J. The GRB2/Sem-5 adaptor protein. FEBS Lett. 1994; 338: 113–117.PubMedCrossRefGoogle Scholar

Copyright information

© Humana Press Inc. 1997

Authors and Affiliations

  • Kenneth Kaushansky
  • Virginia C. Broudy
  • Jonathan G. Drachman

There are no affiliations available

Personalised recommendations