Skip to main content

The Role of Other Hemopoietic Growth Factors and the Marrow Microenvironment in Megakaryocytopoiesis

  • Chapter
Thrombopoiesis and Thrombopoietins

Abstract

The recent identification, purification, and cloning of thrombopoietin (TPO), a lineage-specific regulator of platelet production, is the culmination of several decades of research dealing with the regulation of megakaryocytopoiesis (1–5). Although endogenous TPO plays a pivotal role in promoting the proliferation and maturation of megakaryocytc progenitor cells and megakaryocytes, a considerable amount of data exists that indicates that other growth factors are also capable of altering this finely regulated biological process (6,7). These non-TPO regulatory factors are capable not only of promoting megakaryocytc proliferation and maturation, but also of downregulating these cellular processes (6,7). These growth factors might play an important role in the physiological regulation of megakaryocytopoiesis and may be instrumental in the pathogenesis of a number of clinical syndromes (8–12). In addition, recombinant forms of these growth factors have considerable potential in the treatment of clinical disorders of thrombopoiesis (7).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bartley TD, Bogenberger J, Hunt P, et al. Identification and cloning of a megakaryocyte growth and development factor that is a ligand for the cytokine receptor Mpl. Cell. 1994; 77: 1117–1124.

    PubMed  CAS  Google Scholar 

  2. Lok S, Kaushansky K, Holly RD, et al. Cloning and expression of murine thrombopoietin cDNA and stimulation of platelet production in vivo. Nature. 1994; 369: 565–568.

    PubMed  CAS  Google Scholar 

  3. Kuter DJ, Beeler DL, Rosenberg RD. The purification of megapoietin: a physiological regulator of megakaryocyte growth and platelet production. Proc Natl Acad Sci USA 1994; 91: 11,104–11,108.

    Google Scholar 

  4. Wendling F, Maraskovsky E, Debili N, et al. c-Mpl ligand is a humoral regulator of megakaryocytopoiesis. Nature. 1994; 369: 571–574.

    PubMed  CAS  Google Scholar 

  5. DeSauvage F J, Hass PE, Spenser SD, et al. Stimulation of megakaryocytopoiesis and throm-bopoiesis by the c-Mpl ligand. Nature. 1994; 369: 533–538.

    CAS  Google Scholar 

  6. Hoffman R. Regulation of megakaryocytopoiesis. Blood. 1989; 74: 1196–1212.

    PubMed  CAS  Google Scholar 

  7. Gordon MS, Hoffman R. Growth factors affecting human thrombocytopoiesis: Potential agents for the treatment of thrombocytopenia. Blood. 1992; 80: 302–307.

    PubMed  Google Scholar 

  8. Hollen CW, Henthron J, Koziol JA, Burstein SA. Serum interleukin-6 levels in patients with thrombocytosis. Leukemia Lymphoma. 1992; 8: 235–241.

    PubMed  CAS  Google Scholar 

  9. Straneva JE, Van Besien KW, Derigs G, Hoffman R. Is interleukin 6 the physiological regulator of thrombopoiesis? Exp Hematol . 1992; 20: 47–50.

    PubMed  CAS  Google Scholar 

  10. Hollen CW, Henthorn J, Koziol JA, Burstein SA. Elevated serum interleukin-6 levels in patients with reactive thrombocytosis. Br J Haematol. 1991; 79: 286–290.

    PubMed  CAS  Google Scholar 

  11. Beck JT, Hsu SM, Wijdenes J, et al. Brief report: alleviation of systemic manifestations of Castleman’s disease by monoclonal anti-interleukin-6 antibody therapy. N Engl J Med. 1994; 330: 602–605.

    PubMed  CAS  Google Scholar 

  12. Hoffman R, Briddell RA, van Besien K, et al. Acquired cyclic amegakaryocytic thrombcytopenia associated with an immunoglobulin blocking the action of granulocyte-macrophage colony-stimulating factor. N Engl J Med. 1989; 321: 97–102.

    PubMed  CAS  Google Scholar 

  13. Gurney AL, Carver-Moore K, de Sauvage FJ, Moore MW. Thrombocytopenia in c-mpl-deficientmice. Science. 1994: 265: 1445–1447.

    PubMed  CAS  Google Scholar 

  14. deSauvage FJ, Luoh SM, Carver-Moore, et al. Deficiencies in early and late stages of megakaryocytopoiesis in TPO-KO mice. Blood. 1995; 86: 255a (abstract no 1007).

    Google Scholar 

  15. Harker LA, Finch CA. Thrombokinetics in man. J Clin Invest. 1969; 48: 963–974.

    PubMed  CAS  Google Scholar 

  16. Bursteın SA, Adamson JW, Erb SK, Harker LA. Megakaryocytopoiesis in the mouse: response to varying platelet demand. J Cell Physiol. 1981; 109: 333–341.

    PubMed  Google Scholar 

  17. Levin J, Levin FC, Metcalf D. The effects of acute thrombopenia on megakaryocyte-CFC and granulocyte-macrophage-CFC in mice: studies of bone marrow and spleen. Blood. 1980; 56: 274–283.

    PubMed  CAS  Google Scholar 

  18. Ebbe S, Phalen E. Does autoregulation of megakaryocytopoiesis occur? Blood Cells. 1979; 5: 123–138.

    PubMed  CAS  Google Scholar 

  19. Williams N, Eger RR, Jackson HM, Nelson DJ. Two factor requirement for murine megakaryocyte colony formation. J Cell Physiol. 1982; 110: 101–104.

    PubMed  CAS  Google Scholar 

  20. Mazur EM. Megakaryocytopoiesis and platelet production: a review. Exp Hematol . 1987; 15: 340–350.

    PubMed  CAS  Google Scholar 

  21. Debili N, Wendling F, Katz A, et al. The Mpl-ligand or thrombopoietin or megakaryocyte growth and differentiative factor has both proliferative and differentiative activities on human megakaryocyte progenitors. Blood. 1995; 86: 2516–2525.

    PubMed  CAS  Google Scholar 

  22. Debili N, Wendliing F, Cosman D, et al. The Mpl receptor is expressed on the megakaryocyte lineage from late progenitors to platelets. Blood. 1995; 85: 391–401.

    PubMed  CAS  Google Scholar 

  23. Hoffman R, Murray LJ, Young JS, Leuns KM, Bruno E. Hierarchical structure of human megakaryocyte progenitor cells. Stem Cells, (in press).

    Google Scholar 

  24. Kobayashi M, Laver JH, Kato T, Miyazaki H, Ogawa M. Recombinant human thrombopoietin (Mpl ligand) enhances proliferation of erythroid progenitors. Blood. 1995; 86: 2494–2496.

    PubMed  Google Scholar 

  25. Zent CS, Hornkohl A, Arpeally G, et al. Cyclic thrombocytopenia: Thrombopoietin response to spontaneous changes in platelet counts. Blood. 1995; 86(suppl 1): 370a (abstract no 1470).

    Google Scholar 

  26. Quesenberry PJ, Ihle JN, McGrath E. The effect of interleukin-3 and GM-CSA-2 on megakaryocyte and myeloid clonal colony formation. Blood. 1995; 65: 214.

    Google Scholar 

  27. Robinson BE, McGrath HE, Quesenberry PJ. Recombinant murine granulocyte macrophage colony stimulating factor has megakaryocyte colony-stimulating activity and augments megakaryocyte colony stimulation by interleukin 3. J Clin Invest. 1987; 79: 1648–1652.

    PubMed  Google Scholar 

  28. Kaushansky K, O ’Hara PJ, Berkner K. et al. Genomic cloning, characterization and multilineage growth-promoting activity of human granulocyte-macrophage colony-stimulating factor. Proc Natl Acad Sci USA. 1986; 83: 3101–3105.

    PubMed  Google Scholar 

  29. Peschel C, Paul WE, Ohara J, Green I. Effects of B cell stimulatory factor-1/interleukin 4 on hematopoietic progenitor cells. Blood. 1987; 70: 254–263.

    PubMed  CAS  Google Scholar 

  30. Williams N, Jackson H, Iscove NN, Dukes PP. The role of erythropoietin, thrombopoietic stimulating factor, and myeloid colony-stimulating factors on murine megakaryocyte colony formation. Exp Hematol . 1984; 12: 734–740.

    PubMed  CAS  Google Scholar 

  31. Bruno E, Miller ME, Hoffman R. Interacting cytokines regulate in vitro human megakaryocytopoiesis. Blood. 1989; 73: 671–677.

    PubMed  CAS  Google Scholar 

  32. Emerson SG, Yang YC, Clark SC, Long MW. Human recombinant granulocyte-macrophage colony stimulating factor and interleukini 3 have overlapping but distinict hematopoietic activities. J Clin Invest. 1988; 82: 1282–1287.

    PubMed  Google Scholar 

  33. Bruno E, Cooper RJ, Briddell RA, Hoffman R. Further examination of the effects of recombinant cytokines on the proliferation of human megakaryocyte progenitor cells. Blood. 1991; 77: 2339–2346.

    PubMed  CAS  Google Scholar 

  34. Quesenberry PJ, McGrath HE, Williams ME, et al. Multifactor stimulation of megakaryocytopoiesis: effects of interleuken 6. Exp Hemato L 1991; 19: 35–41.

    CAS  Google Scholar 

  35. Williams N, Jackson H, Walker F, Oon SH. Multiple levels of regulation of megakaryocytopoiesis. Blood Cells. 1989; 15: 123–133.

    PubMed  CAS  Google Scholar 

  36. Ishibashi T, Kimura H, Uchida T, et al. Human interleukin 6 is a direct promoter of maturation of megakaryocytes in vitro. Proc Natl Acad Sci USA. 1989; 86: 5953–5957.

    PubMed  CAS  Google Scholar 

  37. Burstein SA. Interleukin 3 promotes maturation of murine megakaryocytes in vitro. Blood. 1986; 67: 1512.

    PubMed  Google Scholar 

  38. Ishibashi T, Burstein SA. Interleukin 3 promotes the differentiation of isolated single megakaryocytes. Blood. 1986; 67: 1512–1514.

    PubMed  CAS  Google Scholar 

  39. Ishibashi T, Koziol JA, Burstein SA. Human recombinant erythropoietin promotes differentiation of murine megakaryocytes in vitro. J Clin Invest. 1987; 79: 286–289.

    PubMed  CAS  Google Scholar 

  40. Teramura M, Kobayashi S, Hoshino S, Oshimi K, Mizoguchi H. Interleukin-11 enhances human megakaryocytopoiesis in vitro. Blood. 1992; 79: 327–331.

    PubMed  CAS  Google Scholar 

  41. Burstein SA, Henthorn J, Mei R, Williams DE. Mast cell growth factor (MGF) promotes human and murine megakaryocytc (MK) differentiation in vitro. Blood 1991; 78 (suppl 1): 160a (abstract no 629).

    Google Scholar 

  42. Goldman SJ, Lobelenz J, McCarthy K, et al. Recombinant human interleukin-11 (rhIL-11) stimulates megakaryocyte maturation and increases in peripheral platelet numbers in vivo. Blood. 1991; 78 (suppl 1): 132a (abstract no 518).

    Google Scholar 

  43. Metcalf D, Hilton D, Nicola NA. Leaukemia inhibitory factor can potentiate murine megakaryocyte production in vitro. Blood. 1991; 77: 2150–2153.

    PubMed  CAS  Google Scholar 

  44. Ishibashi T, Miller SL, Burstein SA. Type beta transforming growth factor is a potent inhibitor of murine megakaryocytopoiesis in vitro. Blood. 1987; 69: 1737–1741.

    PubMed  CAS  Google Scholar 

  45. Dessypris EN, Gleaton JH, Sawyer ST, Armstrong OL. Suppression of maturation of megakaryocyte colony forming unit in vitro by a platelet released glycoprotein. J Cell Physiol 1987; 130: 361–368.

    PubMed  CAS  Google Scholar 

  46. Mitjavila MT, Vinci G, Villeval JL, et al. Human platelet alpha granules contain a nonspecific inhibitor of megakaryocyte colony formation: its relationship to type beta transforming growth factor (TGF-beta). J Cell Physiol. 1988; 139: 93–100.

    Google Scholar 

  47. Gewirtz AM, Calabretta B, Rucinski B, et al. Inhibition of human megakaryocytopoiesis in vitro by platelet factor 4 (PF4) and a synthetic COOH-terminal PF4 peptide. J Clin Invest. 1989; 83: 1477–1486.

    PubMed  CAS  Google Scholar 

  48. Ganser A, Carlo-Stella C, Greher J, Volkers B, Hoelzer D. Effect of recombinant interferons alpha and gamma on human bone marrow derived megakaryocyte progenitor cells. Blood. 1987;70:1173–1179.

    PubMed  CAS  Google Scholar 

  49. Williams DE, Park LS, Broxmeyer HE, Lu L. Hybrid cytokines as hematopoietic growth factors. Int J Cell Cloning. 1991; 9: 542–547.

    PubMed  CAS  Google Scholar 

  50. Bruno E, Briddel RA, Cooper RJ, Brandt JE, Hoffman R. Recombinant GM-CSF/IL-3 fusion protein. Its effects on in vitro human megakaryocytopoiesis. Exp Hematol . 1992; 20: 494–499.

    PubMed  CAS  Google Scholar 

  51. Broudy VC, Lin NL, Kaushansky K. Thrombopoietin (c-mpl ligand) acts synergistically with erythropoietin, stem cell factor and interleukin-11 to enhance murine megakaryocyte colony growth and increase megakaryocyte ploidy in vitro. Blood. 1995; 85: 1719–1726.

    PubMed  CAS  Google Scholar 

  52. Briddell RA, Hoffman R. Cytokine regulation of the human burst-forming unit-megakaryo-cyte. Blood. 1990; 76: 516–522.

    PubMed  CAS  Google Scholar 

  53. Briddell RA, Bruno E, Cooper RJ, Brandt JE, Hoffman R. Effect of c-kit ligand on in vitro human megakaryocytopoiesis. Blood. 1991; 78: 2854–2859.

    PubMed  CAS  Google Scholar 

  54. Warren MK, Conroy LB, Rose JS. The role of interleukin 6 and interleukin 1 in megakaryocytic development. Exp Hematol . 1989; 17: 1095–1099.

    PubMed  CAS  Google Scholar 

  55. Bruno E, Cooper RJ, Briddell RA, Hoffman R. Effects of recombinant interleukin 11 on human megakaryocyte progenitor cells. Exp Hematol . 1991; 19: 378–381.

    PubMed  CAS  Google Scholar 

  56. Wallace PM, MacMaster JF, Rillena JR, et al. Thrombocytopoietic properties of oncostatin M. Blood. 1995; 86: 1310–1315.

    PubMed  CAS  Google Scholar 

  57. Poloni A, Kobari I, Firat H, et al. Ex vivo expansion of megakaryocytic progenitor cells (CFU-MK) in serum-free conditions: the effect of Flt3 ligand, MGDF and G-CSF. Blood. 1995; 86: 702a (abstract no 2796).

    Google Scholar 

  58. Bruno E, Hoffman R. Effect of interleukin 6 on in vitro human megakaryocytopoiesis: its interaction with other cytokines. Exp Hematol . 1989; 17: 1038–1043.

    PubMed  CAS  Google Scholar 

  59. Burstein SA, Meir J, Friese P, Turner K. Recombinant human leukemia inhibitory factor (LIF) and interleukin 11 (IL-11) promote murine and human megakaryocytopoiesis in vitro. Blood. 1990; 86 (suppl. 1): 450a (abstract no 1789).

    Google Scholar 

  60. Liu J, Modrell B, Aruffo A, et al. Interleukin-6 signal transducer gp 130 mediates oncostatin M signaling. J Biol Chem. 1992; 267: 16,763–16,766.

    Google Scholar 

  61. Bikfalvi A, Han C, Fuhrmann G. Interaction of fibroblast growth factor (FGF) with megakaryocytopoiesis and demonstration of FGF receptor expression in megakaryocytes and megakaryocyte-like cells. Blood. 1992; 80: 1905–1913.

    PubMed  CAS  Google Scholar 

  62. Brunner G, Nguyen H, Gabrilove JR, Rifkin DB, Wilson EL. Basic fibroblast growth factor expression in human bone marrow and peripheral blood cells. Blood. 1993; 81: 631–638.

    PubMed  CAS  Google Scholar 

  63. Oliver LJ, Rifkin DB, Gabrilove J, Hannocks MJ, Wilson EL. Long-term culture of human bone marrow stromal cells in the presence of basic fibroblast growth factor. Growth Factors. 1990;3:231–236.

    PubMed  CAS  Google Scholar 

  64. Wilson EL, Rifkin DB, Kelley F, Hannocks MJ, Gabrilove JL. Basic fibroblast growth factor stimulates myelopoiesis in long-term human bone marrow cultures. Blood. 1991; 77: 954–960.

    PubMed  CAS  Google Scholar 

  65. Bruno E, Cooper RJ, Wilson EL, Gabrilove JL, Hoffman R. Basic fibroblast growth factor promotes the proliferation of human megakaryocyte progenitor cells. Blood. 1993; 82: 430–435.

    PubMed  CAS  Google Scholar 

  66. Hill RJ, Warren MK, Levin J, Gauldie J. Evidence that interleukin-6 does not play a role in the stimulation of platelet production after induction of acute thrombocytopenia. Blood. 1992; 80: 346–351.

    PubMed  CAS  Google Scholar 

  67. Navarro S, Debili N, LeCoudic JR et al. Interleukin-6 and its receptor are expressed by human megakaryocytes: in vitro effect on proliferation and endoreplication. Blood. 1991; 77: 461–471.

    PubMed  CAS  Google Scholar 

  68. Wickenhauser C, Lorenzen J, Thiele J, et al. Secretion of cytokines (interleukins-1 alpha, -3, and -6 and granulocyte-macrophage colony-stimulating factor) by normal human bone marrow megakaryocytes. Blood. 1995; 85: 685–691.

    PubMed  CAS  Google Scholar 

  69. Vainchenker W, Chapman J, Deschamps JF, et al. Normal human serum contains a factor(s) capable of inhibiting megakaryocyte colony formation. Exp Hematol . 1982; 10: 650–660.

    PubMed  CAS  Google Scholar 

  70. Han ZC, Sensebe L, Abgrall JF, Briere J. Platelet factor 4 inhibits human megakaryocytopoiesis in vitro. Blood. 1990; 75: 1234–1239.

    PubMed  CAS  Google Scholar 

  71. Griffin CG, Grant BW. Effects of recombinant interferons on human megakaryocyte growth. Exp Hematol . 1990; 18: 1013–1018.

    PubMed  CAS  Google Scholar 

  72. Gewirtz AM, Zhang J, Ratajczak M, et al. Chemokine regulation of human megakaryocytopoiesis. Blood. 1995; 86: 2559–2567.

    PubMed  CAS  Google Scholar 

  73. Montovani A, Sozzani S. Chemokines. Lancet. 1994; 343: 923.

    Google Scholar 

  74. Walz A, Baggiolini M. A novel cleavage product of beta-thromboglobulin formed in cultures of stimulated mononuclear cells activates human neutrophils. Biochem BiophyRes Commun. 1989; 159: 969–975.

    CAS  Google Scholar 

  75. Springer TA. Adhesion receptors of the immune system. Nature. 1990; 346: 425–434.

    PubMed  CAS  Google Scholar 

  76. Long MW. Blood cell cytoadhesion molecules. Exp Hematol 1992; 20: 288–301.

    PubMed  CAS  Google Scholar 

  77. Anderson DM, Lyman SD, Baird A, et al. Molecular cloning of mast cell growth factor, ahematopoietin that is active in both membrane bound and soluble forms. Cell. 1990; 63: 235–243.

    PubMed  CAS  Google Scholar 

  78. Gordon MY, Riley GP, Watt SM, Greaves MF. Compartmentalization of a haematopoietic growth factor (GM-CSF) by glycosaminoglycans in the bone marrow microenvironment. Nature. 1987; 326: 403–405.

    PubMed  CAS  Google Scholar 

  79. Gospodarowicz D, Ill C. Extracellular matrix and control proliferation of vascular endothelial cells. J Clin Invest. 1980; 65: 1351–1364.

    PubMed  CAS  Google Scholar 

  80. Gospodarowicz D, Delagado D, Vlodavsky I. Permissive effect of the extracellular matrix on cell proliferation in vitro. Proc Natl Acad Sci USA. 1980; 77: 4094–4098.

    PubMed  CAS  Google Scholar 

  81. Zucker-Franklin D, Petursson SR. Thrombocytopoiesis—analysis by membrane tracer and freeze-fracture studies on fresh human and cultured mouse megakaryocytes. J Cell Biol. 1984; 99: 390–402.

    PubMed  CAS  Google Scholar 

  82. Eldor A, Fuks Z, Levine RF, Vlodavsky I. Measurement of platelet and megakaryocyte interaction with the subendothelial extracellular matrix. Methods Enzymol. 1989; 169: 76–91.

    PubMed  CAS  Google Scholar 

  83. Tablin F, Castro M, Levin RM. Blood platelet formation in vitro. The role of the cytoskeleton in megakaryocyte fragmentation. J Cell Sci. 1990; 97: 59–70.

    PubMed  Google Scholar 

  84. Long MW, Briddell R, Walter AW, Bruno E, Hoffman R. Human hematopoietic stem cell adherence to cytokines and matrix molecules. J Clin Invest. 1992; 90: 251–255.

    PubMed  Google Scholar 

  85. McDonald TP, Cottrell MB, Clift RE, Cullin MC, Lin FK. High doses of recombinant erythropoietin stimulate platelet production in mice. Exp Hematol . 1987; 15: 719–721.

    PubMed  CAS  Google Scholar 

  86. Eschbach JW, Abdulhadi MH, Browne JK, et al. Recombinant human erythropoietin in anemic patients with end-stage renal disease. Results of a phase III multi-center clinical trial. Ann Intern Med. 1989; 111: 992–1000.

    PubMed  CAS  Google Scholar 

  87. Ganser A, Volkers B, Greher J, et al. Recombinant human granulocyte-macrophage colony-stimulating factor in patients with myelodysplastic syndromes: A phasel/II trial. Blood. 1989; 73: 31–37.

    PubMed  CAS  Google Scholar 

  88. Vadhan-Raj S, Keating M, Hittelman WN, et al. Effects of recombinant human granulocyte-macrophage colony-stimulating factor in patients with myelodysplastic syndromes. N Engl J Med. 1987; 317: 1545–1552.

    PubMed  CAS  Google Scholar 

  89. Neumanitis J, Rabinowe S, Singer J, et al. Recombinant granulocyte-macrophage colony-stimulating factor after autologous bone marrow transplantation for lymphoid cancer. N Engl J Med. 1991; 324: 1773–.

    PubMed  Google Scholar 

  90. Levine JD, Allan JD, Tessitore JH, et al. Recombinant human granulocyte-macrophage colony-stimulating factor ameliorates zidovudine-induced neutropenia in patients with acquired immune deficiency syndrome (AIDS)/AIDS related complex. Blood. 1991; 78: 3148–3154.

    PubMed  CAS  Google Scholar 

  91. Lieschke GJ, Maher D, Cebon J, et al. Effects of bacterially synthesized recombinant human granulocyte-macrophage colony-stimulating factor in patients with advanced malignancy. Ann Intern Med. 1989; 110: 357–364.

    PubMed  CAS  Google Scholar 

  92. Bunn PA Jr, Browly J, Hazaka M, et al. The role of GM-CSF in limited stage SCLC: a randomized phase III study of the Southwest Oncology Group (SWOG). Proc Am Soc Clin Oncol. 1992; 11: 292 (abstract no 974).

    Google Scholar 

  93. Anasetti C, Anderson G, Applebaum FR, et al. Phase III study of rhGM-CSF in allogeneic marrow transplantation from unrelated donors. Blood. 1993; 82 (suppl 1): 454a (abstract no 1799).

    Google Scholar 

  94. Nash RA, Burstein SA, Storb R, et al. Thrombocytopenia in dogs induced by granulocyte-macrophage colony-stimulating factor: increased destruction of circulating platelets. Blood. 1995; 86: 1765–1775.

    PubMed  CAS  Google Scholar 

  95. Smith J II, Longo D, Alvord W, et al. Thrombopoietic effects of IL-1 alpha in combination with high dose carboplatin. Proc Am Soc Clin Oncol. 1992; 11: 252 (abstract no 820a).

    Google Scholar 

  96. Tewari A, Buhles W Jr, Starnes HF Jr. Preliminary report: effects of interleukin-1 on platelet counts. Lancet. 1990; 336: 712–714.

    PubMed  CAS  Google Scholar 

  97. Crown J, Jakubowski A, Kemeny N, et al. Phase I trial of recombinant human interleukin-1 beta alone and in combination with myeluppressive doses of 5-fluorouracil in patients with gastrointestinal cancer. Blood. 1991; 78: 1420–1427.

    PubMed  CAS  Google Scholar 

  98. Tong J, Gordon MS, Srour EF, et al. In vivo administration of recombinant methionyl stem cell factor expands the number of human marrow hematopoietic stem cells. Blood. 1993; 82: 785–789.

    Google Scholar 

  99. Ganser A, Lindemann A, Seipelt G, et al. Effects of recombinant interleukin-3 in normal hemtopoiesis and in patients with bone marrow failure. Blood. 1990; 76: 1666–1667.

    Google Scholar 

  100. Ganser A, Seipert G, Lindemann A, et al. Effects of recombinant human interleukin-3 in patients with myelodysplastic syndromes. Blood. 1990; 76: 455–462.

    PubMed  CAS  Google Scholar 

  101. Ottmann OG, Ganser A, Seipert G, et al. Effects of recombinant interleukin-3 on human hematopoietic progenitor and precursor cells in vivo. Blood. 1990; 76: 1494–1502.

    PubMed  CAS  Google Scholar 

  102. Kurzrock R, Talpaz M, Estrov Z, Rosenblum MG, Gutterman JD. Phase I study of recombinant human interleukin-3 in patients with bone marrow failure. J Clin Oncol. 1991; 9: 1241–1250.

    PubMed  CAS  Google Scholar 

  103. Postmus PE, Gietma JA, Damsma O, et al. Effects of recombinant interleukin-3 in patients with relapsed small cell lung cancer treatment with chemotherapy: a dose finding study. J Clin Oncol. 1992; 10: 1131–1140.

    PubMed  CAS  Google Scholar 

  104. Biesma B, Willemse PH, Mulder NH, et al. Effects of interleukin-3 after chemotherapy for advanced ovarian cancer. Blood. 1992; 80: 1141–1148.

    PubMed  CAS  Google Scholar 

  105. D’Hondt V, Weynants P, Humblet Y, et al. Dose-dependent interleukin-3 stimulation of throm-bopoiesis and neutropoiesis in patients with small-cell lung carcinoma before and following chemotherapy: a placebo-controlled randomized phase lb study. J Clin Oncol. 1993; 11:2063–2071.

    PubMed  Google Scholar 

  106. Weber J, Yang JC, Topalian SL, et al. Phase I trial of subcutaneous interleukin-6 in patients with advanced malignancies. J Clin Oncol. 1993; 11: 499–506.

    PubMed  CAS  Google Scholar 

  107. Gordon MS, Nemunaitis J, Hoffman R, et al. A phase I trial of recombinant human interleukin-6 on patients with myelodysplastic syndromes and thrombocytopenia. Blood. 1995; 85: 3066–3075.

    PubMed  CAS  Google Scholar 

  108. Van Gameren MM, Willemse PH, Mulder NH. Effects of recombinant human interleukin-6 in cancer patients: a phase I-II study. Blood. 1994; 84: 1434–1444.

    PubMed  Google Scholar 

  109. Veldhuis GJ, Willemse PH, Sleijfer DT, et al. Toxicity and efficacy of escalating dosages of recombinant human interleukin-6 after chemotherapy in patients with breast cancer or non-small cell lung cancer. J Clin Oncol. 1995; 13: 2585–2593.

    PubMed  CAS  Google Scholar 

  110. D’Hondt V, Humblet Y, Guillaume T, et al. Thrombopoietic effects and toxicity of interleukin-6 in patients with ovarian cancer before and after chemotherapy: a multicentric placebo-controlled, randomized phase Ib study. Blood. 1995; 85: 2347–2353.

    PubMed  Google Scholar 

  111. Gorden MS, Hoffman R, Battiato L, et al. Recombinant human interleukin-11 (NEUMEGA™ rhIL-11 growth factor, rhIL-11) prevents severe thrombocytopenia in breast cancer patients receiving multiple cycles of cyclophosphamide and doxorubicin chemotherapy. Proc Am Soc Clin Oncol. 1994; 13: 133, 1994 (abstract no 326a).

    Google Scholar 

  112. Orazi A, Cooper RJ, Tong J, et al. Effects of recombinant human interleukin eleven (NEUMEGA™rhIL-l 1 growth factor) on megakaryocytopoiesis in human bone marrow. Exp Hematol . 1996 (in press).

    Google Scholar 

  113. Elias L, Tepler I, Smith JW, et al. Randomized trial of recombinant human interleukin eleven (NEUMEGA™rhIL-11 growth Factor) in patients with severe chemotherapy-induced thrombocytopenia. Blood. 1995; 86: 1979 (abstract no 498a).

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Humana Press Inc.

About this chapter

Cite this chapter

Hoffman, R. (1997). The Role of Other Hemopoietic Growth Factors and the Marrow Microenvironment in Megakaryocytopoiesis. In: Kuter, D.J., Hunt, P., Sheridan, W., Zucker-Franklin, D. (eds) Thrombopoiesis and Thrombopoietins. Humana Press. https://doi.org/10.1007/978-1-4612-3958-1_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-3958-1_10

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-4612-8440-6

  • Online ISBN: 978-1-4612-3958-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics