Skip to main content

Abstract

Megakaryocytes are giant, polyploid cells of the hemopoietic tissues, whose final differentiation step culminates in the subdivision and release of their cytoplasm into the circulation as platelets. The earliest recognizable megakaryocyte in Romanovsky-stained marrow smears is a large basophilic cell with a high nuclear-to-cytoplasmic ratio and plasma membrane blebbing. As the cells mature, the nuclear-to-cytoplasmic ratio decreases as the amount of cytoplasm dramatically increases and becomes acidophilic, with abundant cytoplasmic granules, while the nucleus becomes lobulated and the chromatin condenses. Megakaryocytes are readily distinguished from osteoclasts, the other large cells in the marrow, by their nuclear morphology; megakaryocytes usually have only one large, lobulated nucleus, whereas osteoclasts contain several small nuclei. Megakaryocytes differentiate from a committed progenitor, which, by definition, has restricted differentiation capabilities. This committed progenitor is derived from a pluripotential hemopoietic precursor. A bipotential progenitor intermediate between the pluripotential and committed precursor with capacity to differentiate along either the megakaryocyte or erythroid pathways is suggested by some studies (1,2). A scheme for megakaryocyte differentiation is presented in Fig. 1.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. McDonald TP, Sullivan PS. Megakaryocytc and erythrocytic cell lines share a common precursor cell. Exp Hematol 1993; 21: 1316–1320.

    PubMed  CAS  Google Scholar 

  2. Hunt P. A bipotential megakaryocyte/erythrocyte progenitor cell: the link between erythropoie-sis and megakaryopoiesis becomes stronger. J Lab Clin Med. 1995; 125: 303–304.

    PubMed  CAS  Google Scholar 

  3. Golde DW. The stem cell. Sci Am. 1991; 265: 86–93.

    PubMed  CAS  Google Scholar 

  4. Metcalf D, MacDonald HR, Odartchenko N, Sordat B. Growth of mouse megakaryocyte colonies in vitro. Proc Natl Acad Sci USA. 1975; 72: 1744–1748.

    PubMed  CAS  Google Scholar 

  5. McLeod DL, Shreve MM, Axelrad AA. Induction of megakaryocyte colonies with platelet formation in vitro. Nature. 1976; 261: 492–494.

    PubMed  CAS  Google Scholar 

  6. Nakeff A, Daniels-McQueen S. In vitro colony assay for a new class of megakaryocyte precursor: colony-forming unit megakaryocyte (CFU-M). Proc Soc Exp Biol Med. 1976; 151: 587–590.

    PubMed  CAS  Google Scholar 

  7. Levin J, Levin FC, Penington DG, Metcalf D. Measurement of ploidy distribution in megakaryocyte colonies obtained from culture with studies of the effects of thrombocytopenia. Blood. 1981;57:287–297.

    PubMed  CAS  Google Scholar 

  8. Levin J. Murine megakaryocytopoiesis in vitro: an analysis of culture systems used for the study of megakaryocyte colony-forming cells and of the characteristics of megakaryocyte colonies. Blood. 1983; 61: 617–623.

    PubMed  CAS  Google Scholar 

  9. Chatelain C, de Bast M, Symann M. Identification of a light density murine megakaryocyte progenitor (LD-CFU-M). Blood. 1988; 72: 1187–1192.

    PubMed  CAS  Google Scholar 

  10. Kuriya S, Ogata K, Yamada T, Gomi S, Nomura T. Three stages of differentiation in mouse megakaryocyte progenitor cells (CFU-Meg). Exp Hematol 1990; 18: 416–420.

    PubMed  CAS  Google Scholar 

  11. Williams N, Jackson H. Regulation of the proliferation of murine megakaryocyte progenitor cells by cell cycle. Blood. 1978; 52: 163–170.

    PubMed  CAS  Google Scholar 

  12. Williams NT, Jackson HM, Eger RR, Long MW. The separate roles of factors in murine megakaryocyte colony formation. In: Evatt BL, Levine RF, Williams NT (eds). Megakaryocyte Biology and Precursors: In Vitro Cloning and Cellular Properties. New York: Elsevier/North Holland; 1981:59–73.

    Google Scholar 

  13. Williams NT, Jackson HM. Kinetic analysis of megakaryocyte numbers and ploidy levels in developing colonies from mouse bone marrow cells. Cell Tissue Kinet. 1982; 15: 483–494.

    PubMed  CAS  Google Scholar 

  14. Williams NT, Eger RR, Jackson HM, Nelson DJ. Two-factor requirement for murine megakaryocyte colony formation. J Cell Physiol. 1982; 110: 101–104.

    PubMed  CAS  Google Scholar 

  15. Ishibashi T, Burstein SA. Interleukin-3 promotes the differentiation of isolated single megakaryocytes. Blood. 1986; 67: 1512–1514.

    PubMed  CAS  Google Scholar 

  16. Kavnoudias H, Jackson H, Ettlinger K, Bertoncello I, McNiece I, Williams N. Interleukin 3 directly stimulates both megakaryocyte progenitor cells and immature megakaryocytes. Exp Hematol. 1992; 20: 43–46.

    PubMed  CAS  Google Scholar 

  17. Kaushansky K, Lok S, Holly RD, et al. Promotion of megakaryocyte progenitor expansion and differentiation by c-Mpl ligand thrombopoietin. Nature. 1994; 369: 568–571.

    PubMed  CAS  Google Scholar 

  18. Wendling F, Maraskovsky E, Debili N, et al. c-mpl ligand is a humoral regulator of megakaryocytopoiesis. Nature. 1994; 369: 571–574.

    PubMed  CAS  Google Scholar 

  19. Broudy VC, Lin NL, Kaushansky K. Thrombopoietin (c-mpl ligand) acts synergistically with erythropoietin, stem cell factor, and interleukin-11 to enhance murine megakaryocyte colony growth and increases megakaryocyte ploidy in vitro. Blood. 1995; 85: 1719–1726.

    PubMed  CAS  Google Scholar 

  20. Fauser AA, Messner HA. Identification of megakaryocytes, macrophages and eosinophils in colonies of human bone marrow containing neutrophillic granulocytes and erythroblasts. Blood. 1979; 53: 1023–1027.

    PubMed  CAS  Google Scholar 

  21. Vainchenker W, Bouget J, Guichard J, Breton-Gorius J. Megakaryocyte colony formation from human bone marrow precursors. Blood. 1979; 54: 940–945.

    PubMed  CAS  Google Scholar 

  22. Messner HA, Jamal N, Izaguirre C. The growth of large megakaryocyte colonies from human bone marrow. J Cell Physiol Suppl. 1982; 1: 45–51.

    PubMed  CAS  Google Scholar 

  23. Messner HA, Jamal N, Yamasaki K, Solberg L, Jenkins RB. In vitro examination of human megakaryocyte precursors. In: Levine RF, Williams NT, Levin J, Evatt BL (eds). Megakaryocyte Development and Function. New York: Alan R Liss; 1986: 319–327.

    Google Scholar 

  24. Mazur EM, Hoffman R, Chasis J, Marchesi S, Bruno E. Immunofluorescent identification of human megakaryocyte colonies using an antiplatelet glycoprotein antiserum. Blood. 1981; 57:277.

    PubMed  CAS  Google Scholar 

  25. Mazur EM, Hoffman R, Bruno E, Marchesi S, Chasis J. Two classes of human megakaryocyte progenitor cells. In: Evatt BL, Levine RF, Williams NT (eds). Megakaryocyte Biology and Precursors: In Vitro Cloning and Cellular Properties. New York: Elsevier/North Holland; 1981: 281–288.

    Google Scholar 

  26. Mazur EM, Hoffman R, Bruno E. Regulation of human megakaryocytopoiesis. J Clin Invest. 1981;68:733–741.

    PubMed  CAS  Google Scholar 

  27. Hoffman R, Stravena J, Yang HH, Bruno E, Brandt J. New insights into the regulation of human megakaryocytopoiesis. Blood Cells. 1987; 13: 75–86.

    PubMed  CAS  Google Scholar 

  28. Debili N, Wendling F, Katz A, et al. The Mpl-ligand or thrombopoietin or megakaryocyte growth and differentiative factor has both direct proliferative and differentiative activities on human megakaryocyte progenitors. Blood. 1995; 86: 2516–2525.

    PubMed  CAS  Google Scholar 

  29. Nichol JL, Hokom MM, Hornkohl A, et al. Megakaryocyte growth and development factor. Analyses of in vitro effects on human megakaryopoiesis and endogenous serum levels during chemotherapy-induced thrombocytopenia. J Clin Invest. 1995; 95: 2973–2978.

    PubMed  CAS  Google Scholar 

  30. Long MW, Gragowski LL, Heffner CH, Boxer LA. Phorbol diesters stimulate the development of an early murine progenitor cell. The burst forming unit-megakaryocyte. J Clin Invest. 1985; 76:431–438.

    PubMed  CAS  Google Scholar 

  31. Long MW, Heffner CH, Gragowski LL. In vitro differences in responsiveness of early (BFU-Mk) and late (CFU-Mk) murine megakaryocyte progenitor cells. Prog Clin Biol Res. 1986; 215: 179–186.

    PubMed  CAS  Google Scholar 

  32. Long MW. Population heterogeneity among cells of the megakaryocyte lineage. Stem Cells. 1993; 11:33–40.

    PubMed  CAS  Google Scholar 

  33. Jackson H, Williams N, Bertoncello I, Green R. Classes of primitive murine megakaryocytic progenitor cells. Exp Hematol. 1994; 22: 954–958.

    PubMed  CAS  Google Scholar 

  34. Jackson H, Williams N, Westcott KR, Green R. Differential effects of transforming growth factor-β1 on distinct developmental stages of murine megakaryocytopoiesis. J Cell Physiol. 1994; 161:312–318.

    PubMed  CAS  Google Scholar 

  35. Lowry PA, Deacon DM, Whitefield P, Rao S, Quesenberry M, Quesenberry PJ. The high-proliferative-potential megakaryocyte mixed (HPP-Meg-Mix) cell: a trilineage murine hematopoietic progenitor with multiple growth factor responsiveness. Exp Hematol. 1995; 23: 1135–1140.

    PubMed  CAS  Google Scholar 

  36. Sitnicka E, Lin N, Fox N, et al. The effect of thrombopoietin on the proliferation and differentiation of murine hematopoietic stem cells. Blood. 1996; 87: 4998–5005.

    PubMed  CAS  Google Scholar 

  37. Zeigler FC, de Sauvage F, Widmer HR, et al. In vitro megakaryocytopoietic and thrombopoietic activity of c-mpl ligand (TPO) on purified murine hematopoietic stem cells. Blood. 1994; 84: 4045–4052.

    PubMed  CAS  Google Scholar 

  38. Briddell RA, Brandt JE, Stravena JE, Srour EF, Hoffman R. Characterization of the human burst-forming unit-megakaryocyte. Blood. 1989; 74: 145–151.

    PubMed  CAS  Google Scholar 

  39. Srour EF, Brandt JE, Briddell RA, Leemhuis T, van Besien K, Hoffman R. Human CD34+ HLA-DR- bone marrow cells contain progenitor cells capable of self-renewal, multilineage differentiation, and long-term in vitro hematopoiesis. Blood Cells. 1991; 17: 287–295.

    PubMed  CAS  Google Scholar 

  40. Briddell RA, Brandt JE, Hoffman R. The most primitive human megakaryocyte progenitor cell does not express major histocompatibility class II antigens. Exp Hematol. 1988; 16: 365.

    Google Scholar 

  41. Briddell RA, Hoffman R. Cytokine regulation of the human burst-forming unit-megakaryocyte. Blood. 1990; 76: 516–522.

    PubMed  CAS  Google Scholar 

  42. Bruno E, Cooper RJ, Briddell RA, Hoffman R. Further examination of the effects of recombinant cytokines on the proliferation of human megakaryocyte progenitor cells. Blood. 1991; 77: 2339–2346.

    PubMed  CAS  Google Scholar 

  43. Zauli G, Valvassori L, Capitani S. Presence and characteristics of circulating megakaryocyte progenitor cells in human fetal blood. Blood. 1993; 81: 385–390.

    PubMed  CAS  Google Scholar 

  44. Deutsch VR, Olson TA, Nagler A, Slavin S, Levine RF, Eldor A. The response of cord blood megakaryocyte progenitors to IL-3, IL-6 and aplastic canine serum varies with gestational age. Br J Haematol. 1995; 89: 8–16.

    PubMed  CAS  Google Scholar 

  45. Siena S, Bregni M, Bonsi L, et al. Increase in peripheral blood megakaryocyte progenitors following cancer therapy with high-dose cyclophosphamide and hematopoietic growth factors. Exp Hematol. 1993; 21: 1583–1590.

    PubMed  CAS  Google Scholar 

  46. Briddell R, Glaspy J, Shpall EJ, LeMaistre F, Menchaca D, McNiece IK. Mobilization of myeloid, erythroid and megakaryocyte progenitors by recombinant human stem cell factor (rhSCF) plus filgrastim (rhG-CSF) in patients with breast cancer. Proc ASCO. 1994; 13: 77 (abstract no 109).

    Google Scholar 

  47. Tong J, Gordon MS, Srour EF, et al. In vivo administration of recombinant methionyl human stem cell factor expands the number of human marrow hematopoietic stem cells. Blood. 1993; 82:784–791.

    PubMed  CAS  Google Scholar 

  48. Jones BC, Radley JM, Bradley TR, Hodgson GS. Enhanced megakaryocyte repopulating ability of stem cells surviving 5-fluorouracil treatment. Exp Hematol. 1980; 8: 61–64.

    PubMed  CAS  Google Scholar 

  49. Thean LE, Hodgson GS, Bertoncello I, Radley JM. Characterization of megakaryocyte spleen colony-forming units by response to 5-fluorouracil and by unit gravity sedimentation. Blood. 1983;62:896–901.

    PubMed  CAS  Google Scholar 

  50. Zajicek J. Studies on the histogenesis of blood platelets. I. Histochemistry of acetylcholinesterase activity of megakaryocytes and platelets in different species. Acta Haematol. 1954; 121: 238–244.

    Google Scholar 

  51. Breton-Gorius J, Guichard J. Ultrastructural localization of peroxidase activity in human platelets and megakaryocytes. Am J Pathol. 1972; 66: 277–293.

    PubMed  CAS  Google Scholar 

  52. Breton-Gorius J, Villeval JL, Mitjavila MT, Vinci G, Guichard J, Rochandt H, Flandrin G, Vainchenker W. Ultrastructural and cytochemical characterization of blasts from early erythroblastic leukemias. Leukemia. 1987; 1: 173–178.

    PubMed  CAS  Google Scholar 

  53. Karnovsky MJ, Roots L. A “direct-coloring” thiocholine method for cholinesterases. J Histochem Cytochem. 1964; 12: 219–221.

    PubMed  CAS  Google Scholar 

  54. Jackson CW. Cholinesterase as a possible marker for early cells of the megakaryocytc series. Blood. 1973;42:413–421.

    PubMed  CAS  Google Scholar 

  55. Long MW, Henry RL. Thrombocytosis-induced suppression of small acetylcholinesterase-posi-tive cell in bone marrow of rats. Blood. 1979; 54: 1338–1346.

    PubMed  CAS  Google Scholar 

  56. Tranum-Jensen J, Behnke O. Electron microscopical identification of the committed precursor cell of the megakaryocyte compartment of rat bone marrow. Cell Biol Int Rep. 1977; 1: 445–452.

    PubMed  CAS  Google Scholar 

  57. Long MW, Williams NT, Ebbe S. Immature megakaryocytes in the mouse: physical characteristics, cell cycle status, and in vitro responsiveness to thrombopoietic stimulatory factor. Blood. 1982; 59: 569–575.

    PubMed  CAS  Google Scholar 

  58. Jackson CW. Some characteristics of rat megakaryocyte precursors identified using Cholinesterase as a marker. In: Baldini MG, Ebbe S (eds). Platelets: Production, Function, Transfusion and Storage. New York: Grune & Stratton; 1974: 33–40.

    Google Scholar 

  59. Ebbe S, Stohlman FJ. Megakaryocytopoiesis in the rat. Blood. 1965; 26: 20–34.

    PubMed  CAS  Google Scholar 

  60. Odell TT, Jackson CW Polyploidy and maturation of rat megakaryocytes. Blood. 1968; 32: 102–110.

    PubMed  Google Scholar 

  61. Levine RF, Hazzard KC, Lamberg JD. The significance of megakaryocyte size. Blood. 1982; 60: 1122–1131.

    PubMed  CAS  Google Scholar 

  62. Ebbe S, Stohlman FJ. Effects of hypertransfusion and erythropoietin on labeling of rat megakaryocytes by tritiated thymidine. Proc Soc Exp Biol Med. 1964; 116: 911–914.

    Google Scholar 

  63. De Levai M. Etude cytochimique quantitative des acides desoxyribonucleiques au cours de la maturation megacaryocytaire. Nouv Rev Fr Hematol. 1968; 8: 392–394.

    Google Scholar 

  64. Levine RF. Isolation and characterization of normal human megakaryocytes. Br J Haematol. 1980; 45: 487–497.

    PubMed  CAS  Google Scholar 

  65. Jackson CW, Brown LK, Somerville BC, Lyles SA, Look AT. Two-color flow cytometric measurement of DNA distributions of rat megakaryocytes in unfixed, unfractionated marrow cell suspensions. Blood. 1984; 63: 768–778.

    PubMed  CAS  Google Scholar 

  66. Corash L, Levin J, Mok Y, Baker G, McDowell J. Measurement of megakaryocyte frequency and ploidy distribution in unfractionated murine bone marrow. Exp Hematol. 1989; 17: 278–286.

    PubMed  CAS  Google Scholar 

  67. Tomer A, Harker LA, Burstein SA. Flow cytometric analysis of normal human megakaryocytes. Blood. 1988; 71: 1244–1252.

    PubMed  CAS  Google Scholar 

  68. Paulus JM. DNA metabolism and development of organelles in guinea-pig megakaryocytes: a combined ultrastructural, autoradiographic and cytophotometric study. Blood. 1970; 35: 298–311.

    PubMed  CAS  Google Scholar 

  69. Odell TT Jr, Jackson CW, Friday TJ. Megakaryocytopoiesis in rats with special reference to polyploidy. Blood. 1970; 35: 775–782.

    PubMed  Google Scholar 

  70. Prandini MH, Uzan G, Martin F, Thevenon D, Marguerie G. Characterization of a specific erythromegakaryocytic enhancer within the glycoprotein IIb promoter. J Biol Chem. 1995; 267: 10,370–10,374.

    Google Scholar 

  71. Levene RB, Lamaziere JD, Broxmeyer HE, Lu L, Rabellino EM. Human megakaryocytes. V. Changes in the phenotypic profile of differentiating megakaryocytes. J Exp Med. 1985; 161: 457–474.

    PubMed  CAS  Google Scholar 

  72. Berridge MV, Ralph SJ, Tan AS. Cell-lineage antigens of the stem cell-megakaryocyte-platelet lineage are associated with the platelet IIb-IIIa glycoprotein complex. Blood. 1985; 66: 76–85.

    PubMed  CAS  Google Scholar 

  73. Vinci G, Tabilio A, Deschamps JF, et al. Immunological study of in vitro maturation of human megakaryocytes. Br J Haematol. 1984; 56: 589–605.

    PubMed  CAS  Google Scholar 

  74. Ryo R, Yasunaga M, Saigo K, Yamaguchi N. Megakaryocytc leukemia and platelet factor 4. Leukemia Lymphoma. 1992; 8: 327–336.

    PubMed  CAS  Google Scholar 

  75. Schick PK, Konkle BA, He X, Thornton RD. P-selectin mRNA is expressed at a later phase of megakaryocyte maturation than mRNAs for von Willebrand factor and glycoprotein lb-a. J Lab Clin Med. 1993; 121: 714–721.

    PubMed  CAS  Google Scholar 

  76. Nakamura M, Mori M, Nakazawa S, et al. Replacement of m-calpain by µ-calpain during maturation of megakaryocytes and possible involvement in platelet formation. Thromb Res. 1992; 66: 757–764.

    PubMed  CAS  Google Scholar 

  77. Gilman JR. Normal hemopoiesis in intrauterine and neonatal life. J Pathol. 1942; 52: 25.

    Google Scholar 

  78. Allen Graeve JL, de Alarcon PA. Megakaryocytopoiesis in the human fetus. Arch Dis Child. 1989;64:481–484.

    PubMed  CAS  Google Scholar 

  79. de Alarcon PA, Graeve JLA. Analysis of megakaryocyte ploidy in fetal bone marrow biopsies using a new adaptation of the Feulgen technique to measure DNA content and estimate megakaryocyte ploidy from biopsy specimens. Pediatr Res. 1996; 39: 166–170.

    PubMed  Google Scholar 

  80. Izumi T, Kawakami M, Enzan H, Ohkita T. The size of megakaryocytes in human fetal, infantile and adult hematopoiesis. Hiroshima J Med Sci. 1983; 32: 257–260.

    PubMed  CAS  Google Scholar 

  81. Enzan H, Takahashi H, Kawakami M, Yamashita S, Ohkita T, Yamamoto M. Light and electron microscopic observations of hepatic hematopoiesis of human fetuses. II. Megakaryocytopoiesis. Acta Pathol Jpn. 1980; 30: 937–954.

    PubMed  CAS  Google Scholar 

  82. Emura I, Sekiya M, Ohnishi Y Two types of immature megakaryocyte series in the human fetal liver. Arch Histol Jpn. 1983; 46: 631–643.

    PubMed  CAS  Google Scholar 

  83. Daimon T, David H. An automatic image analysis of megakaryocytes in fetal liver and adult bone marrow. Z Mikrosk Anat Forsch. 1982; 3: 454–460.

    Google Scholar 

  84. Hegyi E, Nakazawa M, Debili N, et al. Developmental changes in human megakaryocyte ploidy. Exp Hematol. 1991; 19: 87–94.

    PubMed  CAS  Google Scholar 

  85. Radley JM, Green SL. Ultrastructure of endomitosis in megakaryocytes. Nouv Rev Fr Hematol. 1989; 31: 232a (abstract).

    Google Scholar 

  86. Japa J. A study of the morphology and development of megakaryocytes. Br J Exp Pathol. 1943; 24: 73–80.

    Google Scholar 

  87. Odell TT, Jackson CW, Reiter RS. Generation cycle of rat megakaryocytes. Exp Cell Res. 1968; 53: 321–328.

    Google Scholar 

  88. Odell TT Jr, Jackson CW, Gosslee DG. Maturation of rat megakaryocytes studied by microspec-trophotometric measurement of DNA. Proc Soc Exp Biol Med. 1965; 119:1194–1199.

    PubMed  CAS  Google Scholar 

  89. Rolovic Z. Ploidy value of endoreduplicating megakaryocytes in immune and “hypersplenic” thrombocytopenia. In: Baldini MG, Ebbe S (eds). Platelets: Production, Function, Transfusion and Storage. New York: Grune & Stratton; 1974: 143–153.

    Google Scholar 

  90. Penington DG, Olsen TE. Megakaryocytes in states of altered platelet production: cell numbers, sizes and DNA content. Br J Haematol. 1970; 18: 447–463.

    PubMed  CAS  Google Scholar 

  91. Mazur EM, Lindquist DL, de Alarcon PA. Evaluation of bone marrow megakaryocyte ploidy in persons with normal and abnormal platelet counts. J Lab Clin Med. 1988; 111: 194–202.

    PubMed  CAS  Google Scholar 

  92. Ebbe S. Regulation of murine megakaryocyte size and ploidy by non-platelet dependent mechanisms in radiation-induced megakaryocytopenia. Radiat Res. 1991; 127: 278–284.

    PubMed  CAS  Google Scholar 

  93. Kuter DJ, Rosenberg RD. Appearance of a megakaryocyte growth-promoting activity, megapoietin, during acute thrombocytopenia in the rabbit. Blood. 1994; 84: 1464–1472.

    PubMed  CAS  Google Scholar 

  94. Kuter DJ, Rosenberg RD. The reciprocal relationship of thrombopoietin (c-Mpl ligand) to changes in the platelet mass during busulfan-induced thrombocytopenia in the rabbit. Blood. 1995; 85: 2720–2730.

    PubMed  CAS  Google Scholar 

  95. Corash L, Chen HY, Levin J, Baker G, Lu H, Mok Y. Regulation of thrombopoiesis: effects of the degree of thrombocytopenia on megakaryocyte ploidy and platelet volume. Blood. 1987; 70: 177–185.

    PubMed  CAS  Google Scholar 

  96. Sullivan PS, Jackson CW, McDonald TP. Castration decreases thrombocytopoeisis and testosterone restores platelet production in castrated Balb/c mice: evidence that testosterone acts on a bipotential hematopoietic precursor cell. J Lab Clin Med. 1995; 125: 326–333.

    PubMed  CAS  Google Scholar 

  97. McDonald TP, Swearingen CJ, Cottrell MB, Clift RE, Bryant SE, Jackson CW. Sex-and strain-related differences in megakaryocytopoiesis and platelet production in C3H and Balb/c mice. J Lab Clin Med. 1992; 120: 168–173.

    PubMed  CAS  Google Scholar 

  98. Jackson CW, Steward SA, Chenaille PJ, Ashmun RA, McDonald TP. An analysis of megakaryocytopoiesis in the C3H mouse: an animal model whose megakaryocytes have 32N as the modal DNA class. Blood. 1990; 76: 690–696.

    PubMed  CAS  Google Scholar 

  99. Jackson CW, Steward SA, Ashmun RA, McDonald TP. Megakaryocytopoiesis and platelet production are stimulated during late pregnancy and early postpartum in the rat. Blood. 1992; 79: 1672–1678.

    PubMed  CAS  Google Scholar 

  100. Tschope D, Schwippert B, Schettler B, et al. Increased GP IIb/IIIa expression and altered DNA-ploidy pattern in megakaryocytes of diabetic BB-rats. Eur J Clin Inv. 1992; 22: 591–598.

    CAS  Google Scholar 

  101. Gewirtz AM, Calabretta B. Molecular regulation of human megakaryocyte development. Int J Cell Cloning. 1990; 8: 267–276.

    PubMed  CAS  Google Scholar 

  102. Wang Z, Zhang Y, Kamen D, Lee E, Ravid K. Cyclin D3 is essential for megakaryocytopoiesis. Blood. 1995; 86: 3783–3788.

    PubMed  CAS  Google Scholar 

  103. Wilhide CC, Van Dang C, Dispersio J, Kenedy AA, Bray PR Overexpression of cyclin Dl in the Dami megakaryocytc cell line causes growth arrest. Blood. 1995; 86: 294–304.

    PubMed  CAS  Google Scholar 

  104. Grana X, Reddy EP. Cell cycle control in mammalian cells: role of cyclins, cyclin dependent kinases (CDKs), growth suppressor genes and cyclin-dependent kinase inhibitors (CKIs). Oncogene. 1995;11:211–219.

    PubMed  CAS  Google Scholar 

  105. Pines J. Cyclins and cyclin-dependent kinases: a biochemical view. Biochem J. 1995; 308: 697–711.

    PubMed  CAS  Google Scholar 

  106. Datta NS, Williams JL, Long MW. The role of cyclin D3-and cyclin E-cell division kinase complexes in megakaryocyte endomitosis. Blood. 1993; 82: 209a (abstract no 822).

    Google Scholar 

  107. Chang CL, Long MW. Inactivation of CDC2 kinase during endomitotic DNA synthesis in human erythroleukemia (HEL) cells. Exp Hematol. 1992; 20: 822 (abstract).

    Google Scholar 

  108. Zhang Y, Wang Z, Kamen D, Ravid K. Analysis of a unique cell cycle during endomitosis in megakaryocytes. Blood. 1994; 84: 389a (abstract no 1540).

    Google Scholar 

  109. Datta NS, Williams JL, Long MW. Alterations in cyclin B and CDC2 protein kinase play a role in megakaryocytc endomitosis. Blood. 1994; 84: 389a (abstract no 1542).

    Google Scholar 

  110. Behnke O. An electron microscope study of the megakaryocyte of the rat bone marrow. I. The development of the demarcation membrane system and the platelet surface coat. J Ultra Res. 1968; 24: 412–433.

    CAS  Google Scholar 

  111. Bentfeld-Barker ME, Bainton DF. Ultrastructure of rat megakaryocytes after prolonged thrombocytopenia. J Ultra Res. 1977; 61: 201–214.

    CAS  Google Scholar 

  112. Zucker-Franklin D, Petursson S. Thrombocytopoiesis-analysis by membrane tracer and freeze-fracture studies on fresh human and cultured mouse megakaryocytes. J Cell Biol. 1984; 99: 390–402.

    PubMed  CAS  Google Scholar 

  113. Radley JM, Scurfield G. The mechanisms of platelet release. Blood. 1980; 56: 996–999.

    PubMed  CAS  Google Scholar 

  114. Radley JM, Haller CJ. The demarcation membrane system of the megakaryocyte: a misnomer? Blood. 1982; 60: 213–219.

    PubMed  CAS  Google Scholar 

  115. Thiele J, Galle R, Sander, C Fischer R. Interactions between megakaryocytes and sinus wall. An ultrastructural study on bone marrow tissue in primary (essential) thrombocythemia. J Submicrosc Cytol Pathol. 1991; 23: 595–603.

    PubMed  CAS  Google Scholar 

  116. White JG. A search for the platelet secretory pathway using electron dense tracers. Am J Pathol. 1970;58:31–49.

    PubMed  CAS  Google Scholar 

  117. Zucker-Franklin D, Benson KA, Meyers KM. Absence of a surface-connected canalicular system in bovine platelets. Blood. 1985; 65: 241–244.

    PubMed  CAS  Google Scholar 

  118. White JG. The secretory pathway of bovine platelets. Blood. 1987; 69: 878–885.

    PubMed  CAS  Google Scholar 

  119. White JG. Mechanisms of platelet production. Blood Cells. 1989; 15: 48–57.

    PubMed  CAS  Google Scholar 

  120. Menard M, Meyers KM. Storage pool deficiency in cattle with the Chediak Higashi syndrome results from an absence of dense granule precursors in their megakaryocytes. Blood. 1988; 72: 1726–1734.

    PubMed  CAS  Google Scholar 

  121. White JG. Interaction of membrane systems in blood platelets. Am J Pathol. 1972; 66: 295–312.

    PubMed  CAS  Google Scholar 

  122. Nichols BA, Setzer PY, Bainton DR Glucose-6-phosphatase as a cytochemical marker of endoplasmic reticulum in human leukocytes and platelets. J Histochem Cytochem. 1984; 32: 165–171.

    PubMed  CAS  Google Scholar 

  123. Daimon T, Gotoh Y. Cytochemical evidence of the origin of the dense tubular system in the mouse platelet. Histochemistry. 1982; 76: 189–196.

    PubMed  CAS  Google Scholar 

  124. Paulus JM, Maigne J, Keyhani E. Mouse megakaryocytes secrete acetylcholinesterase. Blood. 1981;58:1100–1106.

    PubMed  CAS  Google Scholar 

  125. Tranum-Jensen J, Behnke O. Acetylcholinesterase in the platelet-megakaryocyte system. I. Structural localization in platelets of the rat, mouse, and cat. Eur J Cell Biol. 1981; 24: 275–280.

    PubMed  CAS  Google Scholar 

  126. Tranum-Jensen J, Behnke O. Acetylcholinesterase in the platelet-megakaryocyte system. II. Structural localization in the megakaryocytes of the rat, mouse and cat. Eur J Cell Biol. 1981; 24:281–286.

    PubMed  CAS  Google Scholar 

  127. Gerrard JM, White JG, Rao GHR, Townsend D. Localization of platelet prostaglandin production in the platelet dense tubular system. Am J Pathol. 1976; 83: 283–298.

    PubMed  CAS  Google Scholar 

  128. White JG, Clawson CC. The surface-connected canalicular system of blood platelets-a fenestrated membrane system. Am J Pathol. 1980; 101: 353–364.

    CAS  Google Scholar 

  129. Breton-Gorius J. Development of two distinct membrane systems associated in giant complexes in pathological megakaryocytes. Ser Haematol. 1975; 8: 49–67.

    PubMed  CAS  Google Scholar 

  130. Handagama PJ, George JN, Shuman MA, McEver RP, Bainton DF. Incorporation of circulating protein into megakaryocyte and platelet granules. ProcNatl A cad Sci USA. 1987; 84: 861–865.

    CAS  Google Scholar 

  131. Handagama PJ, Shuman MA, Bainton DF. Incorporation of intravenously injected albumin, immunoglobulin G, and fibrinogen in guinea pig megakaryocyte granules. J Clin Invest. 1989; 84: 73–82.

    PubMed  CAS  Google Scholar 

  132. Handagama P, Bainton DF, Jacques Y, Conn MT, Lazarus RA, Shuman MA. Kistrin, an integrin antagonist, blocks endocytosis of fibrinogen into guinea pig megakaryocyte and platelet α-granules. J Clin Invest. 1993; 91: 193–200.

    PubMed  CAS  Google Scholar 

  133. Handagama PJ, Amrani DL, Shuman MA. Endocytosis of fibrinogen into hamster megakaryocyte a-granules is dependent on a dimeric gamma A configuration. Blood. 1995; 85: 1790–1795.

    PubMed  CAS  Google Scholar 

  134. Harrison P, Wilbourn B, Debili N, et al. Uptake of plasma fibrinogen into alpha granules of human megakaryocytes and platelets. J Clin Invest. 1989; 84: 1320–1324.

    PubMed  CAS  Google Scholar 

  135. Jones OP. Origin of megakaryocyte granules from Golgi vesicles. Anat Rec. 1960; 138: 105–114.

    PubMed  CAS  Google Scholar 

  136. Nurden AT, Kunicki TJ, Dupuis D, Soria C, Caen JP. Specific protein and glycoprotein deficiencies in platelets isolated from two patients with the gray platelet syndrome. Blood. 1982; 59:709–718.

    PubMed  CAS  Google Scholar 

  137. Rosa JP, George JN, Bainton DF, Nurden AT, Caen JP, McEver RP. Gray platelet syndrome. Demonstration of alpha granule membranes that can fuse with the cell surface. J Clin Invest. 1987;80:1138–1146.

    PubMed  CAS  Google Scholar 

  138. Gerrard JM, Phillips DR, Rao GHR, et al. Biochemical studies of two patients with the gray platelet syndrome. Selective deficiency of platelet alpha granules. J Clin Invest. 1980; 66: 102–109.

    PubMed  CAS  Google Scholar 

  139. Jackson CW, Hutson NK, Steward SA, Nagahito S, Cramer EM. Platelets of the Wistar-Furth rat have reduced levels of a-granule proteins. An animal model resembling gray platelet syndrome. J Clin Invest. 1991; 87: 1985–1991.

    PubMed  CAS  Google Scholar 

  140. George JN. Platelet immunoglobin G: its significance for the evalution of thrombocytopenia and for understanding the origin of a-granule proteins. Blood. 1990; 76: 859–870.

    PubMed  CAS  Google Scholar 

  141. Harrison P. The origin and physiological relevance of a-granule adhesive proteins. Br J Haematol. 1990; 74: 125–130.

    PubMed  CAS  Google Scholar 

  142. Handagama P, Scarborough RM, Shuman MA, Bainton DF. Endocytosis of fibrinogen into megakaryocytes and platelet a-granules is mediated by allß3 (Glycoprotein IIb-IIIa). Blood. 1993; 82: 135–138.

    PubMed  CAS  Google Scholar 

  143. Harrison P, Wilbourn B, Cramer E, et al. The influence of therapeutic blocking of Gp IIb/IIIa on platelet a-granular fibrinogen. Br J Haematol. 1992; 82: 721–728.

    PubMed  CAS  Google Scholar 

  144. Zucker-Franklin D. Endocytosis by human platelets: metabolic and freeze-fracture studies. J Cell Biol. 1981;91:706–715.

    PubMed  CAS  Google Scholar 

  145. Holmsen H, Weiss HJ. Secretable storage pools in platelets. Annu Rev Med. 1979; 30: 119–134.

    PubMed  CAS  Google Scholar 

  146. Holmsen M. Platelet secretion. In: Colman RW, Hirsch J, Marder VJ, Salzman EW (eds). He-mostasis and Thrombosis: Basic Principles and Clinical Practice. Philadelphia: Lippincott; 1982: 390–403.

    Google Scholar 

  147. Daimon T, David H. Precursors of monoamine-storage organelles in developing megakaryocytes of the rat. Histochemistry. 1983; 77: 353–363.

    PubMed  CAS  Google Scholar 

  148. Israels SJ, Gerrard JM, Jacques YV, et al. Platelet dense granule membranes contain both granulophysin and P-selection (GMP-140). Blood. 1992; 80: 143–152.

    PubMed  CAS  Google Scholar 

  149. Meyers K, Seachord C. Identification of dense granules specific membrane proteins in bovine platelets that are absent in the Chediak-Higashi syndrome. Thromb Haemost. 1990; 64: 319–325.

    PubMed  CAS  Google Scholar 

  150. Fedorko ME. The functional capacity of guinea pig megakaryocytes. I. Uptake of 3H-serotonin by megakaryocytes and their physiologic and morphologic response to stimuli for the platelet release reaction. Lab Invest. 1977; 36: 310–320.

    PubMed  CAS  Google Scholar 

  151. White JG. Serotonin storage organelles in human megakaryocytes. Am J Pathol. 1971; 63: 403–410.

    PubMed  CAS  Google Scholar 

  152. Tranzer JP, DaPrada M, Pletscher A. Storage of 5-hydroxytryptamine in megakaryocytes. J Cell Biol. 1972; 52: 191–197.

    PubMed  CAS  Google Scholar 

  153. Leven RM, Nachmias VT. Cultured megakaryocytes: changes in the cytoskeleton after ADP-induced spreading. J Cell Biol. 1982; 92: 313–323.

    PubMed  CAS  Google Scholar 

  154. Leven RM, Nachmias VT. Alpha-actinin arcs in megakaryocyte spreading. Exp Cell Res. 1984; 152: 476–85.

    PubMed  CAS  Google Scholar 

  155. Fox JEB. The platelet cytoskeleton. Thromb Haemost. 1993; 70: 884–893.

    PubMed  CAS  Google Scholar 

  156. Pestina TI, Jackson CW, Stenberg PE. Abnormal subcellular distribution of myosin and talin in Wistar Furth rat platelets. Blood. 1995; 85: 2436–2446.

    PubMed  CAS  Google Scholar 

  157. Stenberg PE, McDonald TP, Jackson CW. Disruption of microtubules in vivo by vincristine induces large membrane complexes and other cytoplasmic abnormalities in megakaryocytes and platelets of normal rats like those in human and Wistar-Furth rat hereditary macrothrombo-cytopenias. J Cell Physiol. 1995; 162: 86–102.

    PubMed  CAS  Google Scholar 

  158. Leven RM, Yee MK. Megakaryocyte morphogenesis stimulated in vitro by whole and partially fractionated thrombocytopenic plasma: a model system for the study of platelet formation. Blood. 1987; 69: 1046–1059.

    PubMed  CAS  Google Scholar 

  159. Leven RM. Megakaryocyte motility and platelet formation. Scanning Microsc. 1987; 1: 1701–1709.

    PubMed  CAS  Google Scholar 

  160. Tablin F, Castro M, Leven RM. Blood platelet formation in vitro. The role of the cytoskeleton in megakaryocyte fragmentation. J Cell Sci. 1990; 97: 59–70.

    PubMed  Google Scholar 

  161. Jackson CW, Hutson NK, Steward SA, et al. The Wistar-Furth rat: an animal model of hereditary macrothrombocytopenia. Blood. 1988; 71: 1676–1686.

    PubMed  CAS  Google Scholar 

  162. Jackson CW, Hutson NK, Steward SA, Stenberg PE. A unique talin antigenic determinant and anomalous megakaryocyte talin distribution associated with abnormal platelet formation in the Wistar Furth rat. Blood 1992; 79: 1929–1737.

    Google Scholar 

  163. Takata K, Singer SJ. Localization of high concentrations of phosphotyrosine-modified proteins in mouse megakaryocytes. Blood. 1988; 73: 818–821.

    Google Scholar 

  164. Bennett BD, Cowley S, Jiang S, et al. Identification and characterization of a novel tyrosine kinase from megakaryocytes. J Biol Chem. 1994; 269: 1068–1074.

    PubMed  CAS  Google Scholar 

  165. Avraham S, Jiang S, Ota S, et al. Structural and functional studies of the intracellular tyrosine kinase MATK gene and its translated product. J Biol Chem. 1995; 270: 1833–1842.

    PubMed  CAS  Google Scholar 

  166. Jhun BH, Rivnay B, Price D, Avraham H. The MATK tyrosine kinase interacts in a specific and SH2-dependent manner with c-kit. J Biol Chem. 1995; 270: 9661–9666.

    PubMed  CAS  Google Scholar 

  167. Avraham S, London R, Fu YG, et al. Identification and characterization of a novel related adhesion focal tyrosine kinase (RAFTK) from megakaryocytes and brain. J Biol Chem. 1995; 270:27,742–27,751.

    CAS  Google Scholar 

  168. Wolf NS, Trentin JJ. Hemopoietic colony studies. V. Effect of hemopoietic organ stroma on differentiation of pluripotent stem cells. J Exp Med. 1968; 127: 205–214.

    PubMed  CAS  Google Scholar 

  169. Tavassoli M, Aoki M. Localization of megakaryocytes in the bone marrow. Blood Cells. 1989; 15: 3–14.

    PubMed  CAS  Google Scholar 

  170. Lichtman MA, Chamberlain JK, Simon W, Santillo PA. Parasinusoidal location of megakaryocytes in marrow: a determinant of platelet release. Am J Hematol. 1978; 4: 303–312.

    PubMed  CAS  Google Scholar 

  171. Avraham H, Cowley S, Chi SY, Jiang S, Groopman JE. Characterization of adhesive interactions between human endothelial cells and megakaryocytes. J Clin Invest. 1993; 91: 2378–2384.

    PubMed  CAS  Google Scholar 

  172. Rafii S, Sharpiro F, Petengell R, et al. Human bone marrow microvascular endothelial cells support long-term proliferation and differentiation of myeloid and megakaryocytopoietic progenitors. Blood. 1995; 86: 3353–3363.

    PubMed  CAS  Google Scholar 

  173. Avraham H, Scadden DT, Chi S, Broudy VC, Zsebo KM, Groopman JE. Interaction of human bone marrow fibroblasts with megakaryocytes: role of the c-kit ligand. Blood. 1992; 80: 1679–1684.

    PubMed  CAS  Google Scholar 

  174. von Behrens WE. Evidence of phylogenetic canalisation of the circulating platelet mass of man. Thrombosis Diathesis Haemorrhagi. 1972; 27: 159–172.

    Google Scholar 

  175. Trowbridge EA, Martin JF, Slater DN, et al. The origin of platelet count and volume. Clin Phys Physiol Meas. 1984; 5: 145–170.

    PubMed  CAS  Google Scholar 

  176. Paulus JM. Platelet size in man. Blood. 1975; 46: 321–336.

    PubMed  CAS  Google Scholar 

  177. Corash L. Platelet sizing techniques: biologic significance and clinical implications. Curr Top Hematol. 1983;4:99–122.

    PubMed  CAS  Google Scholar 

  178. von Behrens WE. Mediterranean macrothrombocytopenia. Blood. 1975; 46: 199–208.

    PubMed  CAS  Google Scholar 

  179. Harker LA. Megakaryocyte quantitation. J Clin Invest. 1968; 47: 452–457.

    PubMed  CAS  Google Scholar 

  180. Odell TT, Murphy JR, Jackson CW Stimulation of megakaryocytopoiesis by acute thrombocytopenia in rats. Blood. 1976; 48: 765–775.

    PubMed  CAS  Google Scholar 

  181. Illes I, Pfueller S, Hussein S, Chesterman CN, Martin JF. Platelets in idiopathic thrombocytopenic purpura are increased in size but are of normal density. Br J Haematol. 1987; 67: 173–176.

    PubMed  CAS  Google Scholar 

  182. Daw NC, Arnold JT, White MM, Stenberg PE, Jackson CW. Regulation of thrombopoiesis: in vivo response to a single injection of murine, PEG-megakaryocyte growth and development factor. Blood. 1995; 86: 897a (abstract no 3575).

    Google Scholar 

  183. Ulich TR, Del Castillo J, Yin S, et al. Megakaryocyte growth and development factor ameliorates carboplatin-induced thrombocytopenia in mice.Blood. 1995; 86: 971–976.

    PubMed  CAS  Google Scholar 

  184. Harker LA, Hunt P, Marzed UM, et al. Dose-response effects of pegylated human megakaryocyte growth and development factor (PEG-rHuMGDF) on platelet production and function in non-human primates. Blood. 1995; 86: 256a (abstract no 1012).

    Google Scholar 

  185. Ulich TR, Del Castillo J, Senaldi G, Kinstler O, Yin S, Kaufman S, Tarpley J, Choi E, Kirley T, Hunt P, Sheridan WP. Systemic hematologic effects of PEG-rHu-MGDF-induced megakaryocyte hyperplasia in mice. Blood. 1996; 87: 5006–5015.

    PubMed  CAS  Google Scholar 

  186. van Doormaal JJ, van der Meer J, Oosten HR, Halie MR, Doorenbos H. Hypothyroidism leads to more small-sized platelets in circulation. Thromb Haemost. 1987; 58: 964–965.

    PubMed  Google Scholar 

  187. Sullivan P, Gompf R, Schmeitzel L, Clift R, Cottrell M, McDonald TP. Altered platelet indices in dogs with hypothroidism and cats with hyperthyroidism. Am J Vet Res. 1993; 54:2004–2009.

    PubMed  CAS  Google Scholar 

  188. Ford HC, Toomath RJ, Carter JM, Delahunt JW, Fagerstrom JN. Mean platelet volume is increased in hyperthyroidism. Am J Hematol. 1988; 27: 190–193.

    PubMed  CAS  Google Scholar 

  189. Odell TT, Burch EA, Jackson CW, Friday TJ. Megakaryocytopoiesis in mice. Cell Tissue Kinet. 1969; 254: 363–367

    Google Scholar 

  190. Cronkite EP, Bond VP, Fliedner TM, Paglia DA, Adamik ER. Studies on the origin, production and destruction of platelets. In: Johnson SA, Monto RW, Rebuck JW, Horn RC (eds). Blood Platelets. Boston: Little, Brown; 1961: 595–609.

    Google Scholar 

  191. Jackson CW, Edwards CC. Biphasic thrombopoietic response to severe hypobaric hypoxia. Br J Haematol 1977; 35: 233–244.

    PubMed  CAS  Google Scholar 

  192. Aster RH. Studies of the mechanism of “hypersplenic” thrombocytopenia in rats. J Lab Clin Med. 1967; 70: 736–751.

    PubMed  CAS  Google Scholar 

  193. Harker LA, Finch CA. Thrombokinetics in man. J Clin Invest. 1969; 48: 963–974.

    PubMed  CAS  Google Scholar 

  194. Odell TT Jr, Jackson CW, Friday TJ, Charsha DE. Effects of thrombocytopenia on megakaryocytopoiesis. Br J Haematol. 1969; 17: 91–101.

    PubMed  Google Scholar 

  195. Ebbe S, Stohlman F Jr, Donovan J, Overcash J. Megakaryocyte maturation rate in thrombocytopenic rats.. 1968; 32: 787–795.

    CAS  Google Scholar 

  196. Odell TT, McDonald TP, Asano M. Response of rat megakaryocytes and platelets to bleeding. Acta Haematol. 1962; 27: 171–179.

    PubMed  Google Scholar 

  197. Harker LA. Kinetics of thrombopoiesis. J Clin Invest. 1968; 47: 458–465.

    PubMed  CAS  Google Scholar 

  198. Stenberg PE, Levin J, Baker G, Mok Y, Corash L. Neuraminidase-induced thrombocytopenia in mice: effects on thrombopoiesis. J Cell Physiol. 1991; 147: 7–16.

    PubMed  CAS  Google Scholar 

  199. Kalmaz GD, McDonald TP. Effects of antiplatelet serum and thrombopoietin on the percentage of small acetylcholinesterase-positive cells in bone marrow of mice. Exp Hematol. 1981; 9: 1002–1010.

    PubMed  CAS  Google Scholar 

  200. Kraytman M. Platelet size in thrombocytopenias and thrombocytosis of various origin. Blood. 1973;41:587–598.

    PubMed  CAS  Google Scholar 

  201. Ebbe S, Stohlman F Jr, Overcash J, Donovan J, Howard D. Megakaryocyte size in thrombocytopenic and normal rats. Blood. 1968; 32: 383–392.

    PubMed  CAS  Google Scholar 

  202. Burstein SA, Adamson JW, Erb SK, Harker LA. Megakaryocytopoiesis in the mouse: response according to varying platelet demand. J Cell Physiol. 1981; 109: 333–341.

    PubMed  CAS  Google Scholar 

  203. Odell TT, Boran DA. The mitotic index of megakaryocytes after acute thrombocytopenia. Proc Soc Exp Biol Med. 1977; 155: 149–151.

    PubMed  CAS  Google Scholar 

  204. Odell TT Jr, Jackson CW, Reiter RS. Depression of the megakaryocyte-platelet system in rats by transfusion of platelets. Acta Haematol. 1967; 38: 34–42.

    PubMed  Google Scholar 

  205. Krizsa F, Kovacs Z, Dobay E. Effects of vincristine on the megakaryocyte system in mice. J Med. 1973; 4: 12–18.

    PubMed  CAS  Google Scholar 

  206. Rak K. Effect of vincristine on platelet production in mice. Br J Haematol. 1972; 22: 617–624.

    PubMed  CAS  Google Scholar 

  207. Robertson JH, Crozier EH, Woodend BE. The effect of vincristine on the platelet count in rats. Br J Haematol. 1970; 19: 331–337.

    PubMed  CAS  Google Scholar 

  208. Klener P, Donner L, Houskova J. Thrombocytosis in rats induced by vincristine. Haemostasis. 1972; 1:73–78.

    CAS  Google Scholar 

  209. Choi SI, Simone JV, Edwards CC. Effects of vincristine on platelet production. In: Baldini MG, Ebbe S (eds). Platelets: Production, Function, Transfusion and Storage. New York: Grune & Stratton; 1974:51–61.

    Google Scholar 

  210. Jackson CW, Edwards CC. Evidence that stimulation of megakaryocytopoiesis by low dose vincristine results from an effect on platelets. Br J Haematol. 1977; 36: 97–105.

    PubMed  CAS  Google Scholar 

  211. Burstein Y, Giardina PJV, Rausen AR, Kandall SR, Siljestrom K, Peterson CM. Thrombocytosis and increased circulating platelet aggregates in newborn infants of polydrug users. J Pediatr. 1979; 94: 895–899.

    PubMed  CAS  Google Scholar 

  212. Burstein Y, Grady RW, Kreek M J, Rausen AR, Peterson CM. Thrombocytosis in the offspring of female mice receiving dl-Methadone. Proc Soc Exp Biol Med. 1980; 164: 275–279.

    PubMed  CAS  Google Scholar 

  213. Ebbe S, Yee T, Phalen E. 5-Fluorouracil-induced thrombocytosis in mice is independent of the spleen and can be partially reproduced by repeated doses of cytosine arabinoside. Exp Hematol 1989; 17: 822–826.

    PubMed  CAS  Google Scholar 

  214. Chenaille PJ, Steward SA, Ashmun RA, Jackson CW. Prolonged thrombocytosis in mice after 5-fluorouracil results from failure to down-regulate megakaryocyte concentration. An experimental model that dissociates regulation of megakaryocyte size and DNA content from megakaryocyte concentration. Blood. 1990; 76: 508–515.

    PubMed  CAS  Google Scholar 

  215. Radley JM, Hodgson GS, Levin J. Platelet production after administration of antiplatelet serum and 5-fluorouracil. Blood. 1980; 55: 164–165.

    PubMed  CAS  Google Scholar 

  216. Ebbe S, Phalen E. Does autoregulation of megakaryocytopoiesis occur? Blood Cells. 1979; 5: 123–138.

    PubMed  CAS  Google Scholar 

  217. Ebbe S, Phalen E. Macromegakaryocytosis after hydroxyurea. Proc Soc Exp Biol Med. 1982; 171: 151–157.

    PubMed  CAS  Google Scholar 

  218. Petursson SR, Chervenick PA. Megakaryocytopoiesis and granulopoiesis following cyclophosphamide. J Lab Clin Med. 1982; 100: 682–694.

    PubMed  CAS  Google Scholar 

  219. Tanum G. Megakaryocyte DNA content and platelet formation in rats after a sublethal dose of thio-TEPA. Exp Hematol. 1986; 14: 202–206.

    PubMed  CAS  Google Scholar 

  220. Odell TT Jr, Jackson CW, Friday TJ. Effects of radiation on the thrombopoietic system of mice. Radiat Res. 1971; 48: 107–115.

    PubMed  Google Scholar 

  221. Pendry K, Alcorn MJ, Burnett AK. Factors influencing haematological recovery in 53 patients with acute myeloid leukaemia in first remission after autologous bone marrow transplantation. Br J Haematol. 1993; 83: 45–52.

    PubMed  CAS  Google Scholar 

  222. First LR, Smith BR, Lipton J, Nathan DG, Parkman R, Rappeport JM. Isolated thrombocytopenia after allogeneic bone marrow transplantation: existence of transient and chronic thrombocytopenic syndromes. Blood. 1985; 65: 368–374.

    PubMed  CAS  Google Scholar 

  223. Adams JA, Gordon AA, Jiang YZ, et al. Thrombocytopenia after bone marrow transplantation for leukaemia: changes in megakaryocyte growth and growth-promoting activity. Br J Haematol. 1990; 75: 195–201.

    PubMed  CAS  Google Scholar 

  224. Bradford G, Williams N, Barber L, Bertoncello I. Temporal thrombocytopenia after engraft-ment with defined stem cells with long-term marrow reconstituting activity. Exp Hematol. 1993; 21: 1615–1620.

    PubMed  CAS  Google Scholar 

  225. Arnold JT, Barber L, Bertoncello I, Williams NT. Modified thrombopoietic response to 5-FU in mice following transplantation of Lin-Sca-l+ bone marrow cells. Exp Hematol. 1995; 23: 161–167.

    PubMed  CAS  Google Scholar 

  226. Russell ES, Bernstein SE. Blood and blood formation. In: Green EL (ed). The Biology of the Laboratory Mouse. New York: McGraw-Hill; 1966: 351–372.

    Google Scholar 

  227. Ebbe S, Phalen E, Stohlman F Jr. Abnormalities of megakaryocytes in W/Wv mice. Blood. 1973;42:857–864.

    PubMed  CAS  Google Scholar 

  228. Ebbe S, Phalen E, Stohlman F Jr. Abnormalities of megakaryocytes in Sl/Sld mice. Blood. 1973;42:865–871.

    PubMed  CAS  Google Scholar 

  229. Chabot B, Stephenson DA, Chapman RM, Besmer P, Bernstein A. The proto-oncogene c-kit encoding a transmembrane tyrosine kinase receptor maps to the mouse W locus. Nature. 1988; 335: 88–89.

    PubMed  CAS  Google Scholar 

  230. Huang E, Nocka K, Beier DR, et al. The hematopoietic growth factor KL is encoded by the Sl locus and is the ligand of the c-kit receptor, the gene product of the W locus. Cell. 1990; 63: 225–233.

    PubMed  CAS  Google Scholar 

  231. Ebbe S, Bentfeld-Barker ME, Adrados C, et al. Functionally abnormal stromal cells and megakaryocyte size, ploidy and ultrastructure in Sl/Sld mice. Blood Cells. 1986; 12: 217–232.

    PubMed  CAS  Google Scholar 

  232. Ebbe S, Carpenter D, Yee T. Megakaryocytopenia in W/Wv mice is accompanied by an increase in size within ploidy groups and acceleration of maturation. Blood. 1989; 74: 94–98.

    PubMed  CAS  Google Scholar 

  233. Ebbe S, Phalen E, Howard D. Parabiotic demonstration of a humoral factor affecting megakaryocyte size in Sl/Sld mice. Proc Soc Exp Biol Med. 1978; 158: 637–642.

    PubMed  CAS  Google Scholar 

  234. Kuter DJ, Beeler DL, Rosenberg RD. The purification of megapoietin: a physiological regulator of megakaryocyte growth and platelet production. Proc Natl Acad Sci USA. 1994; 91: 11,104–11,108.

    CAS  Google Scholar 

  235. Leven RM, Tablin F. Megakaryocyte and platelet ultrastructure in the Wistar Furth rat. Am J Pathol. 1988; 132:417–426.

    PubMed  CAS  Google Scholar 

  236. Lee KP. Emperipolesis of hematopoietic cells within megakaryocytes in bone marrow of the rat. Vet Pathol. 1989; 26: 473–478.

    PubMed  CAS  Google Scholar 

  237. White JG. Structural defects in inherited and giant platelet disorders. In: Harris H, Hirschhorn K (eds). Advances in Human Genetics. New York: Plenum; 1990: 133–234.

    Google Scholar 

  238. Swank RT, Jiang SY, Reddington M, et al. Inherited abnormalities in platelet organelles and platelet formation and associated altered expression of low molecular weight guanosine triph-osphate-binding proteins in the mouse pigment mutant gunmetal. Blood. 1993; 81:2626–2635.

    PubMed  CAS  Google Scholar 

  239. Novak EK, Reddington M, Zhen L, et al. Inherited thrombocytopenia caused by reduced platelet production in mice with the gunmetal pigment gene mutation. Blood. 1995; 85: 1781–1789.

    PubMed  CAS  Google Scholar 

  240. Winocour PD, Rand ML, Kinlough-Rathbone RL, Richardson M, Mustard JF. Platelet function and survival in rats with genetically determined hypercholesterolaemia. Atheroclerosis. 1989; 76: 63–70.

    CAS  Google Scholar 

  241. Ebbe S, Dalai K, Forte T, Tablin F. Microcytic thrombocytosis, small megakaryocytes, platelet lipids and hyperreactivity to collagen, lymphocytopenia, eosinophilia and low blood volume in genetically hyperlipidemic rabbits. Exp Hematol. 1992; 20: 486–493.

    PubMed  CAS  Google Scholar 

  242. Goldstein JL, Kita T, Brown MS. Defective lipoprotein receptors and atherosclerosis. Lessons from an animal counterpart of familial hypercholesterolemia. N EnglJ Med. 1983; 309

    Google Scholar 

  243. Novak EK, Hui S, Swank RT. Platelet storage pool deficiency in mouse pigment mutations associated with seven distinct genetic loci. Blood. 1984; 63: 536–544.

    PubMed  CAS  Google Scholar 

  244. Swank RT, Reddington M, Howlett O, Novak EK. Platelet storage pool deficiency associated with inherited abnormalities of the inner ear in the mouse pigment mutants muted and mocha. Blood. 1991;78:2036–2044.

    PubMed  CAS  Google Scholar 

  245. Novak EK, Sweet HO, Prochazka M, et al. Cocoa: a new mouse model for platelet storage pool deficiency. Br J Haematol. 1988; 69: 371–378.

    PubMed  CAS  Google Scholar 

  246. Swank RT, Sweet HO, Davisson MT, Reddington M, Novak EK. Sandy: a new mouse model for platelet storage pool deficiency. Genet Res. 1991; 58: 51–62.

    PubMed  CAS  Google Scholar 

  247. Raymond SL, Dodds WJ. Characterisitics of the Fawn-hooded rat as a model for hemostatic studies. Thrombosis Diathesis Haemorrhagica. 1975; 33: 361–369.

    CAS  Google Scholar 

  248. Tschopp TB, Zucker MB. Hereditary defect in platelet function in rats. Blood. 1972; 40: 217–226.

    PubMed  CAS  Google Scholar 

  249. White RA, Peters LL, Adkinson LR, Korsgren C, Cohen CM, Lux SE. The murine pallid mutation is a platelet storage pool disease associated with the protein 4.2 (pallidin) gene. Nat Genet. 1992; 2: 80–83.

    PubMed  CAS  Google Scholar 

  250. Peters LL, Eicher EM, Hoock TC, John KM, Yialamas M, Lux SE. Evidence that the mouse platelet storage pool deficiency mutation mocha is a defect in a new member of the ankyrin gene family, ANK-3. Blood. 1993; 82: 340a (abstract no 1344).

    Google Scholar 

  251. Rolovic Z, Jovanovic T, Stankovic Z, Marinkovic N. Abnormal megakaryocytopoiesis in the Belgrade laboratory rat. Blood. 1985; 65: 60–64.

    PubMed  CAS  Google Scholar 

  252. Rolovic Z, Basara N, Stojanovic N, Suvajdzic N, Pavlovic-Kentera V. Abnormal megakaryocytopoiesis in the Belgrade laboratory rat. Blood. 1991; 77: 456–460.

    PubMed  CAS  Google Scholar 

  253. McDonald TP, Jackson CW. Mode of inheritance of the higher degree of megakaryocyte polyploidization in C3H mice. I. Evidence for a role of genomic imprinting in megakaryocyte polyploidy determination. Blood. 1994; 83: 1493–1498.

    PubMed  CAS  Google Scholar 

  254. Dale DC, Ailing DW, Wolff SM. Cyclic hematopoiesis: the mechanism of cyclic neutropenia in grey collie dogs. J Clin Invest. 1972; 51: 2197–2204.

    PubMed  CAS  Google Scholar 

  255. Weiden PL, Robinett B, Graham TC, Adamson J, Storb R. Canine cyclic neutropenia: a stem cell defect. J Clin Invest. 1974; 53: 950–953.

    PubMed  CAS  Google Scholar 

  256. Jones JB, Lange RD, Jones ES. Cyclic hematopoiesis in a colony of dogs. J Am Vet Med Assoc. 1975; 166: 365–367.

    PubMed  CAS  Google Scholar 

  257. Jones JB, Langes RD, Yang TJ, Vodopick H, Jones ES. Canine cyclic neutropenia: erythropoie-sis and platelet cycles after bone marrow transplantation. Blood. 1975; 45: 213–219.

    PubMed  CAS  Google Scholar 

  258. Dale DC, Graw RG Jr. Transplantation of allogeneic bone marrow in canine cyclic neutropenia. Science. 1974; 183: 83–84.

    PubMed  CAS  Google Scholar 

  259. McDonald TP, Clift R, Jones JB. Canine cyclic hematopoiesis: platelet size and thrombopoietin level in relation to platelet count. Proc Soc Exp Biol Med. 1976; 153: 424–428.

    PubMed  CAS  Google Scholar 

  260. Gurney AL, Carver-Moore K, de Sauvage FJ, Moore MW. Thrombocytopenia in c-mpl-deficient mice. Science. 1994; 265: 1445–1447.

    PubMed  CAS  Google Scholar 

  261. de Sauvage FJ, Carver-Moore K, Luoh S, et al. Physiological regulation of early and late stages of megakaryocytopoeisis by thrombopoietin. J Exp Med. 1996; 183: 651–656.

    PubMed  Google Scholar 

  262. Shivdasani RA, Rosenblatt MF, Zucker-Franklin D, et al. Transcription factor NF-E2 is required for platelet formation independent of the actions of thrombopoietin/MGDF in megakaryocyte development. Cell. 1995; 81: 695–704.

    PubMed  CAS  Google Scholar 

  263. Guy CT, Zhou W, Kaufman S, Robinson MO. E2F-1 blocks terminal differentiation and causes proliferation in transgenic megakaryocytes. Mol Cell Biol. 1996; 16: 685–693.

    PubMed  CAS  Google Scholar 

  264. Yan XQ, Lacey D, Fletcher F, et al. Chronic exposure to retroviral vector encoded MGDF (mpl-ligand) induces lineage-specific growth and differentiation of megakaryocytes in mice. Blood. 1995; 86: 4025–4033.

    PubMed  CAS  Google Scholar 

  265. Kieffer N, Guichard J, Farcet J, Vainchenker W, Breton-Gorius J. Biosynthesis of major platelet proteins in human blood platelets. Eur J Biochem. 1987; 164: 189–195.

    PubMed  CAS  Google Scholar 

  266. Inokuchi K, Nomura T. The relationship between the type of bcr-abl hybrid messenger RNA and thrombopoiesis in Philadelphia-positive chronic myelogenous leukemia. Leukemia Lymphoma. 1993; 10: 9–15.

    Google Scholar 

  267. Thiele J, Wagner S, Weuste R, et al. An immunomorphometric study on megakaryocyte precursor cells in bone marrow tissue from patients with chronic myeloid leukemia (CML). Eur J Haematol. 1990; 44: 63–70.

    PubMed  CAS  Google Scholar 

  268. Thiele J, Titius BR, Kopsidis C, Fischer R. Atypical micromegakaryocytes, promegakaryo-blasts and megakaryoblasts: a critical evaluation by immunohistochemistry, cytochemistry and morphometry of bone marrow trephines in chronic myeloid leukemia and myelodysplastic syndromes. Virchows Arch B Cell Pathol Incl Mol Pathol. 1992; 62: 275–282.

    PubMed  CAS  Google Scholar 

  269. Franzen S, Strenger G, Zaijicek J. Microplanimetric studies on megakaryocytes in chronic granulocytic leukaemia and polycythaemia vera. Acta Hematol. 1961; 26: 182–193.

    CAS  Google Scholar 

  270. Lagerlof B. Cytophotometric study of megakaryocyte ploidy in polcythemia vera and chronic granulocytic leukemia. Acta Cytol. 1972; 16: 240–244.

    PubMed  CAS  Google Scholar 

  271. Renner D, Queisser W. Megakaryocyte polyploidy and maturation in chronic granulocytic leukemia. Acta Haematol. 1988; 80: 74–78.

    PubMed  CAS  Google Scholar 

  272. Pestina TI, Mareeva TO, Morozov NG, Sokovinina YM, Votrin II. The level of adenine nucleotides in platelets at different stages of chronic myelogenous leukemia. Vopr Med Khim. 1991; 5: 89–100.

    Google Scholar 

  273. Kimura H, Ohkoshi T, Matsuda S, Uchida T, Kariyone S. Megakaryocytopoiesis in polycythemia vera: characterization by megakaryocytc progenitors (CFU-Meg) in vitro and quantitation of marrow megakaryocytes. Acta Haematol. 1988; 79: 1–6.

    PubMed  CAS  Google Scholar 

  274. Thiele J, Jensen B, Orth KH, Orth H, Moedder B, Fischer R. Ultrastructure of megakaryocytes in the human bone marrow of patients with primary (essential)-thrombocythemia. J Submicro Cytol S Pathol. 1988; 20: 671–681.

    CAS  Google Scholar 

  275. Thiele J, Wagner S, Degel C, et al. Megakaryocyte precursors (pro-and megakaryoblasts) in bone marrow tissue from patients with reactive thrombocytosis, polycythemia vera and primary (essential) thrombocythemia. An immunomorphometric study. Virchows Arch B Cell Pathol Incl Mol Pathol. 1990; 58: 295–302.

    PubMed  CAS  Google Scholar 

  276. Tomer A, Friese P, Conklin R, et al. Flow cytometric analysis of megakaryocytes from patients with abnormal platelet counts. Blood. 1989; 74: 594–601.

    PubMed  CAS  Google Scholar 

  277. Queisser W, Weidenauer G, Queisser U, Kempgens U, Muller U. Megakaryocyte ploidization in myeloproliferative disorders. Blut. 1976; 32: 13–20.

    PubMed  CAS  Google Scholar 

  278. Han ZC, Briere J, Abgrall JF, et al. Spontaneous formation of megakaryocyte progenitors (CFU-Mk) in primary thrombocythaemia. Acta Haematol. 1987; 78: 51–53.

    PubMed  CAS  Google Scholar 

  279. Miyakawa Y, Oda A, Druker BJ, et al. Thrombopoietin induces tyrosine phosphorylation of Stat3 and Stat5 in human blood platelets. Blood. 1996; 87: 439–446.

    PubMed  CAS  Google Scholar 

  280. Alexander WS, Metcalf D, Dunn AR. Point mutations within a dimer interface homology domain of c-Mpl induce constitutive receptor activity and tumorigenicity. EMBO J. 1995; 14: 5569–5578.

    PubMed  CAS  Google Scholar 

  281. Drachman JG, Griffin JD, Kaushansky K. The c-Mpl ligand (thrombopoietin) stimulates tyrosine phosphorylation of Jak2, Shc, and c-Mpl. J Biol Chem. 1995; 270: 4979–4982.

    PubMed  CAS  Google Scholar 

  282. Ezumi Y, Takayama H, Okuma M. Thrombopoietin, c-Mpl ligand, induces tyrosine phosphorylation of Tyk2, JAK2, and STAT3, and enhances agonists-induced aggregation in platelets in vitro. FEBS Lett. 1995; 374: 48–52.

    PubMed  CAS  Google Scholar 

  283. Miyakama Y, Oda A, Druker BJ, et al. Recombinant thrombopoietin induces rapid protein tyrosine phosphorylation of Janus kinase 2 and Shc in human blood platelets. Blood. 1995; 86: 23–27.

    Google Scholar 

  284. Morella KK, Bruno E, Kumaki S, et al. Signal transduction by the receptors for thrombopoietin (c-mpl) and interleukin-3 in hematopoietic and nonhematopoietic cells. Blood. 1995; 86: 557–571.

    PubMed  CAS  Google Scholar 

  285. Bennett JM, Catovsky D, Daniel MT, et al. Criteria for the diagnosis of acute leukemia of megakaryocyte lineage (M7). A report of the French-American-British cooperative group. Ann Intern Med. 1985; 103: 460–462.

    PubMed  CAS  Google Scholar 

  286. Jackson CW, Dahl GV. Relationship of megakaryocyte size at diagnosis to chemotherapeutic response in children with acute nonlymphocytic leukemia. Blood. 1983; 61: 867–870.

    PubMed  CAS  Google Scholar 

  287. Brody JP, Krause JR. Morphometric study of megakaryocyte size and prognosis in adults with acute non-lymphocytic leukemia. Leukemia Res. 1986; 10: 475–480.

    CAS  Google Scholar 

  288. Gerrard JM, McNicol A. Platelet storage pool deficiency, leukemia, and myleodysplastic syndromes. Leukemia Lymphoma. 1992; 8: 277–281.

    PubMed  CAS  Google Scholar 

  289. Hall JG. Thrombocytopenia and absent radius (TAR) syndrome. J Med Genet. 1987; 24: 79–83.

    PubMed  CAS  Google Scholar 

  290. Brochstein JA, Shank B, Kernan NA, Terwilliger JW, O’Reilly RJ. Marrow transplantation for thrombocytopenia-absent radii syndrome. J Pediatr. 1992; 121: 587–589.

    PubMed  CAS  Google Scholar 

  291. Homans AC, Cohen JL, Mazur EM. Defective megakaryocytopoiesis in the syndrome of thrombocytopenia with absent radii. Br J Haemol. 1988; 70: 205–210.

    CAS  Google Scholar 

  292. Breton-Gorius J, Vainchenker W, Nurden A, Levy-Toledano S, Caen J. Defective a-granule production in megakaryocytes from gray platelet syndrome: ultrastructural studies of bone marrow cells and megakaryocytes growing in culture from blood precursors. Am J Pathol. 1981; 102: 10–19.

    PubMed  CAS  Google Scholar 

  293. Levy-Toledano S, Caen JP, Breton-Gorius J, et al. Gray platelet syndrome: a-granule deficiency. Its influence on platelet function. J Lab Clin Med. 1981; 96: 831–847.

    Google Scholar 

  294. Raccuglia G. Gray platelet syndrome: a variety of qualitative platelet disorder. Am J Med. 1971; 57: 818–828.

    Google Scholar 

  295. White JG. Ultrastructural studies of the gray platelet syndrome. Am J Pathol. 1979; 95:445–462.

    PubMed  CAS  Google Scholar 

  296. Nurden AT, Dupuis D, Kunicki TJ, Caen JP. Analysis of the glycoprotein and protein composition of Bernard-Soulier platelets by single and two-dimensional sodium dodecyl sulfate-poly-acrylamide gel electrophoresis. J Clin Invest. 1981; 67: 1431–1440.

    PubMed  CAS  Google Scholar 

  297. Fox JEB. Identification of actin-binding protein as the protein linking the membrane skeleton to glycoproteins on platelet plasma membranes. J Biol Chem. 1985; 260: 11,970–11,977.

    CAS  Google Scholar 

  298. Greinacher A, Nieuwenhuis HK, White JG. Sebastian platelet syndrome: a new variant of hereditary macrothrombocytopenia with leukocyte inclusions. Blut. 1990; 61: 282–288.

    PubMed  CAS  Google Scholar 

  299. van Nostrand WE, Schmaier AH, Farrow JS, Cines DB, Cunningham DD. Protease nexin-2/ amyloid β-protein precursor in blood is a platelet-specific protein. Biochem Biophys Res Commun. 1991; 175: 15–21.

    PubMed  Google Scholar 

  300. Stenberg PE, Shuman MA, Levine SP, Bainton DF. Optimal techniques for immunocytochemi-cal demonstration of ß-thromboglobulin, platelet factor 4, and fibrinogen in the alpha granules of unstimulated platelets. Histochem J. 1984; 16: 983–1001.

    PubMed  CAS  Google Scholar 

  301. Stenberg PE, Shuman MA, Levine SP, Bainton DF. Redistribution of alpha-granules and their contents in thrombin-stimulated platelets. J. Cell Biol. 1984; 98: 748–760.

    PubMed  CAS  Google Scholar 

  302. Tschopp J, Jenne DE, Hertig S, et al. Human megakaryocytes express clusterin and package it without apolipoprotein A-1 into α-granules. Blood. 1993; 82: 118–125.

    PubMed  CAS  Google Scholar 

  303. Wencel-Drake JD, Dahlback B, White JG, Ginsberg MH. Ultrastructural localization of coagulation Factor V in human platelets. Blood. 1986; 68: 244–249.

    PubMed  CAS  Google Scholar 

  304. Suzuki H, Kinlough-Rathbone RL, Packham MA, Tanoue K, Yamazaki H, Mustard JF. Immu-nocytochemical localization of fibrinogen during thrombin-induced aggregation of washed human platelets. Blood. 1988; 71: 1310–1320.

    PubMed  CAS  Google Scholar 

  305. Wencel-Drake JD, Painter RG, Zimmerman TS, Ginsberg MH. Ultrastructural localization of human platelet thrombospondin, fibrinogen, fibronectin and von Willebrand factor in frozen thin section. Blood. 1985; 65: 929–938.

    PubMed  CAS  Google Scholar 

  306. Ginsberg MH, Taylor L, Painter RG. The mechanism of thrombin-induced platelet factor 4 secretion. Blood. 1980; 661–668.

    Google Scholar 

  307. Pham TD, Kaplan KL, Butler VP. Immunoelectron microscopic localization of platelet factor 4 and fibrinogen in the granules of human platelets. J Histochem Cytochem. 1983; 31: 905–910.

    PubMed  CAS  Google Scholar 

  308. Cramer EM, Debili N, Martin JF, et al. Uncoordinated expression of fibrinogen compared with thrombospondin and von Willebrand Factor in maturing human megakaryocytes. Blood. 1989; 73:1123–1129.

    PubMed  CAS  Google Scholar 

  309. Gachet C, Hanau D, Spehner D, et al. Alpha II beta-Ill integrin dissociation induced by EDTA results in morphological changes of the platelet surface-connected canalicular system with differential location of the two separate subunits. J Cell Biol. 1993; 120: 1021–1030.

    PubMed  CAS  Google Scholar 

  310. Cramer EM, Meyer D, le Menn R, Breton-Gorius J. Eccentric localization of von Willebrand factor in an internal structure of platelet a-granule resembling that of Weibel Palade bodies. Blood. 1985;66:710–713.

    PubMed  CAS  Google Scholar 

  311. Metzelaar MJ, Heijnen HFG, Sixma JJ, Nieuwenhuis HK. Identification of a 33-Kd protein associated with the a-granule membrane (GMP-33) that is expressed on the surface of activated platelets. Blood. 1992; 79: 372–379.

    PubMed  CAS  Google Scholar 

  312. Berger GMassé J, Cramer EM. Alpha-granule membrane mirrors the platelet plasma membrane and contains glycoprotein lb, IX and V. Blood. 1996; 87: 1385–1395.

    Google Scholar 

  313. Cramer EM, Savidge GF, Vainchenker W, et al. Alpha-granule pool of glycoprotein IIb-IIIa in normal and pathologic platelets and megakaryocytes. Blood. 1990; 75: 1220–1227.

    PubMed  CAS  Google Scholar 

  314. Hardisty R, Pidard D, Cox A, et al. A defect of platelet aggregation associated with an abnormal distribution of glycoprotein Ilb-IIIa complexes within the platelet: the cause of a lifelong bleeding disorder. Blood. 1992; 80: 696–708.

    PubMed  CAS  Google Scholar 

  315. Berger G, Caen JP, Berndt MC, Cramer EM. Ultrastructural demonstration of CD36 in the ex-granule membrane of human platelets and megakaryocytes. Blood. 1993; 82: 3034–3044.

    PubMed  CAS  Google Scholar 

  316. Stenberg PE, McEver RP, Shuman MA, Jacques YV, Bainton DF. A platelet alpha granule membrane protein (GMP-140) is expressed on the plasma membrane after activation. J Cell Biol. 1985; 101:880–886.

    PubMed  CAS  Google Scholar 

  317. Breton-Gorius J, Clezardin P, Guichard J, et al. Localization of platelet osteonectin at the internal face of the a-granule membranes in platelets and megakaryocytes. Blood. 1992; 79: 936–941.

    PubMed  CAS  Google Scholar 

  318. Cramer EM, Berger G, Berndt MC. Platelet a-granule and plasma membrane share two new components: CD-9 and PECAM-1. Blood. 1994; 84: 1722–1730.

    PubMed  CAS  Google Scholar 

  319. Berger G, Quarck R, Tenza D, Levy-Toledano S, de Gunzburg J, Cramer EM. Ultrastructural localization of the small GTP-binding protein Rapl in human platelets and megakaryocytes. Br J Haematol. 1994; 88: 372–382.

    PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Humana Press Inc.

About this chapter

Cite this chapter

Jackson, C.W., Arnold, J.T., Pestina, T.I., Stenberg, P.E. (1997). Megakaryocyte Biology. In: Kuter, D.J., Hunt, P., Sheridan, W., Zucker-Franklin, D. (eds) Thrombopoiesis and Thrombopoietins. Humana Press. https://doi.org/10.1007/978-1-4612-3958-1_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-3958-1_1

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-4612-8440-6

  • Online ISBN: 978-1-4612-3958-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics