Advertisement

Prostate Cancer

  • Arthur R. Brothman
  • Briana J. Williams
Part of the Contemporary Biomedicine book series (CB, volume 13)

Abstract

As the leading malignancy of males in Western countries, prostate cancer has become a major research focus, yet only recently have techniques become available for the accurate study of this complex tumor. Clinically, prostate tumors follow widely varying courses of progression, with a subset of tumors showing little or no advancement and rarely causing death, in contrast to aggressive tumors that metastasize to bone, lymph nodes or other sites and kill the patient. There is currently no biological marker that can distinguish the indolent from the aggressive form of this disease. Current methods for prostate cancer detection include digital rectal examination, ultrasonic analysis, and assay for serum levels of the prostatic specific antigen (PSA). Although PSA screening, combined with digital rectal examination is the most sensitive test to date, it fails to detect all tumors, gives false positive results, and cannot distinguish indolent from aggressive tumors. Treatment of early-stage prostate cancer in the United States often involves removal of the prostate gland, especially in otherwise healthy men, but the surgery is often complicated by significant side effects, including incontinence and impotence which negatively affect the quality of postsurgical life.

Keywords

Comparative Genomic Hybridization Prostate Tumor Human Prostate Cancer Allelic Imbalance Androgen Receptor Gene 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Arps S, Rodewald A, Schmalenberger B, Carl P, Bressel M, Kastendieck H: Cytogenetic survey of 32 cancers of the prostate. Cancer Genet Cytogenet 66:93–99, 1993.PubMedCrossRefGoogle Scholar
  2. 2.
    Atkin NB, Baker MC: Chromosome study of five cancers of the prostate. Hum Genet 70:359–364, 1985.PubMedCrossRefGoogle Scholar
  3. 3.
    Babu VR, Miles BJ, Cerny JC, Weiss L, Van Dyke DL: Cytogenetic study of four cancers of the prostate. Cancer Genet Cytogenet 48:83–87, 1990.PubMedCrossRefGoogle Scholar
  4. 4.
    Breitkreuz T, Romanakis K, Lutz S, Seitz G, Bonkhoff H, Unteregger G, Zwergel T, Zang KD, Wullich B: Genotypic characterization of prostatic carcinomas: a combined cytogenetic, flow cytometry, and in situ DNA hybridization study. Cancer Res 53:4035–4040, 1993.PubMedGoogle Scholar
  5. 5.
    Brothman AR, Peehl DM, Patel AM, McNeal JE: Frequency and pattern of karyotypic abnormalities in human prostate cancer. Cancer Res 50: 3795–3803, 1990.PubMedGoogle Scholar
  6. 6.
    Brothman AR, Peehl DM, Patel AM, MacDonald GR, McNeal JE, Ladaga LE, Schellhammer PF: Cytogenetic evaluation of 20 cultured primary prostatic tumors. Cancer Genet Cytogenet 55:79–84, 1991.PubMedCrossRefGoogle Scholar
  7. 7.
    Debruyne FMJ, Collins VP, van Dekken H, Jenkins RB, Klocker H, Schalken JA, Sesterhenn IA: Cytogenetics of prostate cancer. Scand J Urol Nephrol Suppl 162:65–71, 1994.PubMedGoogle Scholar
  8. 8.
    Gibas Z, Pontes JE, Sandberg AA: Chromosome rearrangements in a metastatic adenocarcinoma of the prostate. Cancer Genet Cytogenet 16:301–304, 1985.PubMedCrossRefGoogle Scholar
  9. 9.
    Henke R-P, Kruger E, Ayhan N, Hubner D, Hammerer P: Frequency and distribution of numerical chromosomal aberrations in prostatic cancer. Hum Pathol 25(5):476–84, 1994.PubMedCrossRefGoogle Scholar
  10. 10.
    Jones E, Zhu XL, Rohr LR, Stephenson RA, Brothman AR: Aneusomy of chromosomes 7 and 17 detected by FISH in prostate cancer and the effects of selection in vitro. Genes Chromosome Cancer 11:163–170, 1994.CrossRefGoogle Scholar
  11. 11.
    Limon J, Lundgren R, Elfving P, Heim S, Kristoffersson U, Mandahl N, Mitelman F: Double minutes in two primary adenocarcinomas of the prostate. Cancer Genet Cytogenet 39:191–194, 1989.PubMedCrossRefGoogle Scholar
  12. 12.
    Lundgren R, Kristoffersson U, Heim S, Mandahl N, Mitelman F: Multiple structural chromosome rearrangements, including del(7q) and del(10q), in an adenocarcinoma of the prostate. Cancer Genet Cytogenet 35:103–108, 1988.PubMedCrossRefGoogle Scholar
  13. 13.
    Lundgren R, Mandahl N, Heim S, Limon J, Henrikson H, Mitelman F: Cytogenetic analysis of 57 primary prostatic adenocarcinomas. Genes Chromosome Cancer 4:16–24, 1992.CrossRefGoogle Scholar
  14. 14.
    Lundgren R, Heim S, Mandahl N, Anderson H, Mitelman F: Chromosome abnormalities are associated with unfavorable outcome in prostatic cancer patients. J Urol 147:784–788, 1992.PubMedGoogle Scholar
  15. 15.
    Macoska JA, Trybus TM, Sakr WA, Wolf MC, Benson PD, Powell IJ, Pontes JE: Fluorescence in situ hybridization analysis of 8p allelic loss and chromosome 8 instability in human prostate cancer. Cancer Res 54:3824–3830, 1994.PubMedGoogle Scholar
  16. 16.
    Micale MA, Sanford JS, Powell IJ, Sakr WA, Wolman SR: Defining the extent and nature of cytogenetic events in prostatic adenocarcinoma: paraffin FISH vs. metaphase analysis. Cancer Genet Cytogenet 69:7–12, 1993.PubMedCrossRefGoogle Scholar
  17. 17.
    Oshimura M, Sandberg AA: Isochromosome 17 in prostatic cancer. J Urol 114:249,250,1975.Google Scholar
  18. 18.
    Sandberg AA: Chromosomal abnormalities and related events in prostate cancer. Hum Pathol 23(4):368–380, 1992.PubMedCrossRefGoogle Scholar
  19. 19.
    Konig JJ, Teubel W, van Dongen JW, Hagemeijer A, Romijn RC, Schroder FH: Tissue culture loss of aneuploid cells from carcinomas of the prostate. Genes Chromosome Cancer 8:22–27, 1993.CrossRefGoogle Scholar
  20. 20.
    Eagle LR, Yin X, Brothman AR, Williams BJ, Atkin NB, Prochownik EV: Mutation of the MXI1 gene in prostate cancer. Nat Genet 9:249–255, 1995.PubMedCrossRefGoogle Scholar
  21. 21.
    Bergerheim USR, Kunimi K, Collins VP, Ekman P: Deletion mapping of chromosomes 8, 10, and 16 in human prostatic carcinoma. Genes Chromosome Cancer 3:215–220, 1991.CrossRefGoogle Scholar
  22. 22.
    Bova GS, Carter BS, Bussemakers MJG, Emi M, Fujiwara Y, Kyprianou N, Jacobs SC, Robinson JC, Epstein JI, Walsh PC, Isaacs WB: Homozygous deletion and frequent allelic loss of chromosome 8p22 loci in human prostate cancer. Cancer Res 53:3869–3873, 1993.PubMedGoogle Scholar
  23. 23.
    Brewster SF, Browne S, Brown KW: Somatic allelic loss at the DCC, APC, nm23-Hl and p53 tumor suppressor gene loci in human prostatic carcinoma. J Urol 151:1073–1077, 1994.PubMedGoogle Scholar
  24. 24.
    Brooks JD, Bova GS, Isaacs WB: Allelic loss of the retinoblastoma gene in primary human prostatic adenocarcinomas. Prostate 26:35–39, 1995.PubMedCrossRefGoogle Scholar
  25. 25.
    Brothman AR, Steele MR, Williams BJ, Jones E, Odelberg S, Albertsen HM, Jorde JB, Rohr LR, Stephenson RA: Loss of chromosome 17 loci in prostate cancer detected by polymerase chain reaction quantitation of allelic markers. Genes Chromosome Cancer 13:278–284, 1995.CrossRefGoogle Scholar
  26. 26.
    Carter BS, Ewing CM, Ward WS, Treiger BF, Aalders TW, Schalken JA, Epstein JI, Isaacs WB: Allelic loss of chromosomes 16q and 10q in human prostate cancer. Proc Natl Acad Sci USA 87:8751–8755, 1990.PubMedCrossRefGoogle Scholar
  27. 27.
    Dong J-T, Lamb PW, Rinker-Schaeffer CW, Vukanovic J, Ichikawa T, Isaacs JT, Barrett JC: KAI1, a metastasis suppressor gene for prostate cancer on human chromosome 11p11.2. Science 268:884–886, 1995.PubMedCrossRefGoogle Scholar
  28. 28.
    Effert PJ, Neubauer A, Walther PJ, Liu ET: Alterations of the p53 gene are associated with the progression of a human prostate carcinoma. J Urol 147:789–793, 1992.PubMedGoogle Scholar
  29. 29.
    Effert PJ, McCoy RH, Walther PJ, Liu ET: p53 gene alterations in human prostate carcinoma. J Urol 150:257–261, 1993.PubMedGoogle Scholar
  30. 30.
    Emmert-Buck MR, Vocke CD, Pozzatti RO, Duray PH, Jennings SB, Florence CD, Zhuang Z, Bostwick DG, Liotta LS, Linehan WM: Allelic loss on chromosome 8p 12–21 in microdissected prostatic intraepithelial neoplasia. Cancer Res 55:2959–2962, 1995.PubMedGoogle Scholar
  31. 31.
    Gao X, Honn KV, Grignon D, Sakr W, Chen YQ: Frequent loss of expression and loss of heterozygosity of the putative tumor suppressor gene DCC in prostatic carcinomas. Cancer Res 53:2723–2727, 1993.PubMedGoogle Scholar
  32. 32.
    Gao X, Zacharek A, Salkowski A, Grignon DJ, Sakr W, Porter AT, Honn KV: Loss of heterozygosity of the BRCA1 and other loci on chromosome 17q in human prostate cancer. Cancer Res 55:1002–1005, 1995.PubMedGoogle Scholar
  33. 33.
    Kunimi K, Bergerheim USR, Larsson I-L, Ekman P, Collins VP: Allelotyping of human prostatic adenocarcinoma. Genomics 11:530–536, 1990.CrossRefGoogle Scholar
  34. 34.
    Latil A, Baron J-C, Cussenot O, Fourier G, Soussi T, Boccon-Gibod L, Le Duc A, Rouesse J, Lidereau R: Genetic alterations in localized prostate cancer: identification of a common region of deletion on chromosome arm 18q. Genes Chromosome Cancer 11:119–125, 1994.CrossRefGoogle Scholar
  35. 35.
    MacGrogan D, Levy A, Bostwick D, Wagner M, Wells D, Bookstein R: Loss of chromosome arm 8p loci in prostate cancer: mapping by quantitative allelic imbalance. Genes Chromosome Cancer 10:151–159, 1994.CrossRefGoogle Scholar
  36. 36.
    Macoska JA, Powell IJ, Sakr W, Lane M-A: Loss of the 17p chromosomal region in a metastatic carcinoma of the prostate. J Urol 147:1142–1146, 1992.PubMedGoogle Scholar
  37. 37.
    Macoska JA, Micale MA, Sakr WA, Benson PD, Wolman SR: Extensive genetic alterations in prostate cancer revealed by dual PCR and FISH analysis. Genes Chromosome Cancer 8:88–97, 1993.CrossRefGoogle Scholar
  38. 38.
    Morton RA, Ewing CM, Nagafuchi A, Tsukita S, Isaacs WB: Reduction of E-cadherin levels and deletion of the α-catenin gene in human prostate cancer cells. Cancer Res 53:3585–3590, 1993.PubMedGoogle Scholar
  39. 39.
    Phillips SMA, Morton DG, Lee SJ, Wallace DMA, Neoptolemos JP: Loss of heterozygosity of the retinoblastoma and adenomatous polyposis susceptibility gene loci and in chromosomes 10p, l0q, and 16q in human prostate cancer. Br J Urol 73:390–395, 1994.PubMedCrossRefGoogle Scholar
  40. 40.
    Sadasivan R, Morgan R, Jennings S, Austenfeld M, Van-Veldhuizen P, Stephens R, Noble M: Overexpression of her-2/neu may be an indicator of poor prognosis in prostate cancer. J Urol 150(1): 126–131, 1993.PubMedGoogle Scholar
  41. 41.
    Sakr WA, Macoska JA, Benson P, Grignon DJ, Wolman SR, Pontes JE, Crissman JD: Allelic loss in locally metastatic, multisampled prostate cancer. Cancer Res 54:3273–3277, 1994.PubMedGoogle Scholar
  42. 42.
    Suzuki H, Emi M, Komiya A, Fujiwara Y, Yatani R, Nakamura Y, Shimazaki J: Localization of a tumor suppressor gene associated with progression of human prostate cancer within a 1.2 Mb region of 8p22-p21.3. Genes Chromosome Cancer 13:168–174, 1995.CrossRefGoogle Scholar
  43. 43.
    Taplin M-E, Bubley GJ, Shuster TD, Frantz ME, Spooner AE, Ogata GK, Keer HN, Balk SP: Mutation of the androgen-receptor gene in metastatic androgen-dependent prostate cancer. NEJM 332(21): 1393–1398, 1995.PubMedCrossRefGoogle Scholar
  44. 44.
    Trapman J, Sleddens HFBM, van der Weiden MM, Dinjens WNM, Konig JJ, Schroder FH, Faber PW, Bosman FT: Loss of heterozygosity of chromosome8 microsatellite loci implicates a candidate tumor suppressor gene between the loci D8S87 and D8S 133 in human prostate cancer. Cancer Res 54: 6061–6064, 1994.PubMedGoogle Scholar
  45. 45.
    Zenklusen JC, Thompson JC, Troncoso P, Kagan J, Conti CJ: Loss of heterozygosity in human primary prostate carcinomas: a possible tumor suppressor gene at 7q31.1. Cancer Res 54:6370–6376, 1995.Google Scholar
  46. 46.
    Visakorpi T, Hyytinen E, Koivisto P, Tanner M, Keinanen R, Palmberg C, Palotie A, Isola J, Kallioniemi O-P: In vivo amplification of the androgen receptor gene and progression of human prostate cancer. Nat Genet 9: 401–06, 1995.PubMedCrossRefGoogle Scholar
  47. 47.
    Alers JC, Krijtenburg PJ, Vissers KJ, Bosman FT, van der Kwast TH, van Dekken H: Interphase cytogenetics of prostatic adenocarcinoma and precursor lesions: analysis of 25 radical prostatectomies and 17 adjacent prostatic intraepithelial neoplasias. Genes Chromosome Cancer 12:241–250, 1995.CrossRefGoogle Scholar
  48. 48.
    Bandyk MG, Zhao L, Troncoso P, Pisters LL, Palmer JL, von Eschenbach AC, Chung LWK, Liang JC: Trisomy 7: a potential cytogenetic marker of human prostate cancer progression. Genes Chromosome Cancer 9:19–27, 1994.CrossRefGoogle Scholar
  49. 49.
    Baretton GB, Valina C, Vogt T, Schneiderbanger K, Diebold J, Lohrs U: Interphase cytogenetic analysis of prostatic carcinomas by use of nonisotopic in situ hybridization. Cancer Res 554:4472–4480, 1994.Google Scholar
  50. 50.
    Brothman AR, Patel AM, Peehl DM, Schellhammer PF: Analysis of prostatic tumor cultures using fluorescence in-situ hybridization (FISH). Cancer Genet Cytogenet 62:180–185, 1992.PubMedCrossRefGoogle Scholar
  51. 51.
    Brothman AR, Watson MJ, Zhu XL, Williams BJ, Rohr LR: Evaluation of 20 archival prostate tumor specimens by fluorescence in situ hybridization (FISH). Cancer Genet Cytogenet 75:40–47, 1994.PubMedCrossRefGoogle Scholar
  52. 52.
    Brown JA, Alcaraz A, Takahashi S, Persons DL, Lieber MM, Jenkins RB: Chromosomal aneusomies detected by fluorescent in situ hybridization analysis in clinically localized prostate carcinoma. J Urol 152:1157–1162, 1994.PubMedGoogle Scholar
  53. 53.
    Cher ML, Ito T, Weidner N, Carroll PR, Jensen RH: Mapping of regions of physical deletion on chromosome 16q in prostate cancer cells by fluorescence in situ hybridization (FISH). J Urol 153:249–254, 1995.PubMedCrossRefGoogle Scholar
  54. 54.
    Matsuyama H, Pan Y, Skoog L, Tribukait B, Naito K, Ekman P, Lichter P, Bergerheim USR: Deletion mapping of 8p in prostate cancer by fluorescence in situ hybridization. Oncogene 9(10):3071–3076, 1994.PubMedGoogle Scholar
  55. 55.
    Micale MA, Mohamed A, Sakr W, Powell IJ, Wolman SR: Cytogenetics of primary prostate adenocarcinoma: clonality and chromosome instability. Cancer Genet Cytogenet 61:165–173, 1992.PubMedCrossRefGoogle Scholar
  56. 56.
    Persons DL, Gibney DJ, Katzmann JA, Lieber MM, Farrow GM, Jenkins RB: Use of fluorescent in situ hybridization for deoxyribonucleic acid ploidy analysis of prostatic adenocarcinoma. J Urol 150:120–125, 1993.PubMedGoogle Scholar
  57. 57.
    Takahashi S, Qian J, Brown JA, Alcaraz A, Bostwick DG, Lieber MM, Jenkins RB: Potential markers of prostate cancer aggressiveness detected by fluorescence in situ hybridization in needle biopsies. Cancer Res 54:3574–3579, 1994.PubMedGoogle Scholar
  58. 58.
    Visakorpi T, Hyytinen E, Kallioniemi A, Isola J, Kallioniemi O-P: Sensitive detection of chromosome copy number aberrations in prostate cancer by fluorescence in situ hybridization. Am J Pathol 145(3):624–630, 1994.PubMedGoogle Scholar
  59. 59.
    Williams BJ, Jones E, Brothman AR: Homologous centromere association of chromosomes 9 and 17 in prostate cancer. Cancer Genet Cytogenet, 85: 143–152, 1995.PubMedCrossRefGoogle Scholar
  60. 60.
    Zitzelberger H, Szucs S, Weier H-U, Lehmann L, Braselmann H, Enders S, Schilling A, Bruel J, Hofler H, Bauchinger M: Numerical abnormalities of chromosome 7 in human prostate cancer detected by fluorescence in situ hybridization (FISH) on paraffin-embedded tissue with centromere-specific DNA probes. J Pathol 172:325–335, 1994.CrossRefGoogle Scholar
  61. 61.
    Williams BJ, Jones E, Zhu XL, Steele MR, Stephenson RA, Rohr LR, Brothman AR: Evidence for a tumor suppressor gene distal to BRCA1 in prostate cancer. J Urol 155:720–725, 1996.PubMedCrossRefGoogle Scholar
  62. 62.
    Cher ML, MacGrogan D, Bookstein R, Brown JA, Jenkins RB, Jensen RH: Comparative genomic hybridization, allelic imbalance, and fluorescence in situ hybridization on chromosome 8 in prostate cancer. Genes Chromosome Cancer 11:153–162, 1994.CrossRefGoogle Scholar
  63. 63.
    Visakorpi T, Kallioniemi AH, Syvanen A-C, Hyytinen ER, Karhu R, Tammela T, Isola JJ, Kallioniemi O-P: Genetic changes in primary and recurrent prostate cancer by comparative genomic hybridization. Cancer Res 55:342–347, 1995.PubMedGoogle Scholar
  64. 64.
    Gordon KB, Thompson CT, Char DH, O’Brien JM, Kroll S, Ghazvini S, Gray JW: Comparative genomic hybridization in the detection of DNA copy number abnormalities in uveal melanoma. Cancer Res 54(17):4764–4768, 1994.PubMedGoogle Scholar
  65. 65.
    Levin NA, Brzoska P, Gupta N, Minna JD, Gray JW, Christman MF: Identification of frequent novel genetic alterations in small cell lung carcinoma. Cancer Res 54:5086–5091, 1994.PubMedGoogle Scholar
  66. 66.
    Nacheva E, Grace C, Holloway TL, Green AR: Comparative genomic hybridization in acute myeloid leukemia. Cancer Genet Cytogenet 82: 9–16, 1995.PubMedCrossRefGoogle Scholar
  67. 67.
    Ried T, Petersen I, Holtgreve-Greve H, Speicher MR, Schrock E, duManoir S, Cremer T: Mapping of multiple DNA gains and losses in primary small cell lung carcinomas by comparative genomic hybridization. Cancer Res 54:1801–1806,1994.PubMedGoogle Scholar
  68. 68.
    Berube NG, Speevak MD, Chevrette M: Suppression of tumorigenicity of human prostate cancer cells by introduction of human chromosome del (12) (ql3). Cancer Res 54:3077–3081, 1994.PubMedGoogle Scholar
  69. 69.
    Ichikawa T, Ichikawa Y, Dong J, Hawkins AL, Griffin CA, Isaacs WB, Oshimura M, Barrett JC, Isaacs JT: Localization of metastasis suppressor gene(s) for prostatic cancer to the short arm of human chromosome 11. Cancer Res 52:3486–3490, 1992.PubMedGoogle Scholar
  70. 70.
    Murakami Y, Brothman AR, Leach RJ, White RL: Suppression of malignant phenotype in a human prostate cancer cell line by fragments of normal chromosomal region 17q. Cancer Res 55:3389–3394, 1995.PubMedGoogle Scholar
  71. 71.
    Rinker-Schaeffer CW, Hawkins AL, Ru N, Dong J, Stoica G, Griffin CA, Ichikawa T, Barrett JC, Isaacs JT: Differential suppression of mammary and prostate cancer metastasis by human chromosomes 17 and 11. Cancer Res 54:6249–6256, 1994.PubMedGoogle Scholar
  72. 72.
    Arason A, Barkadottir TB, Egilsson V: Linkage analysis of chromosome 17q markers and breast-ovarian cancer in Icelandic families, and possible relationship to prostatic cancer. Am J Hum Genet 52:711–716, 1993.PubMedGoogle Scholar
  73. 73.
    Tulinius H, Egilsson V, Olafsdottir GH, Sigvaldson H: Risk of prostate, ovarian, and endometrial cancer among relatives of women with breast cancer. Br Med J 305:855–860, 1992.CrossRefGoogle Scholar
  74. 74.
    Ford D, Easton DF, Bishop DT, Narod SA, Goldgar DE: Risks of cancer in BRCA1 mutation carriers. Lancet 343:692–695, 1994.PubMedCrossRefGoogle Scholar
  75. 75.
    Nagele R, Freeman T, McMorrow L, Lee H: Precise spatial positioning of chromosomes during prometaphase: evidence of chromosomal order. Science 270:1831–1835, 1995.PubMedCrossRefGoogle Scholar

Copyright information

© Humana Press Inc. 1997

Authors and Affiliations

  • Arthur R. Brothman
  • Briana J. Williams

There are no affiliations available

Personalised recommendations