Seminar on Stochastic Processes, 1981 pp 79-110 | Cite as
Levy Systems and Path Decompositions
- 7 Citations
- 296 Downloads
Abstract
Itô [21] introduced the idea of a point process attached to a Markov process X, and subsequent work of Weil [42], Getoor [11], [12] and Maisonneuve [29] has shown that the existence of a suitably Markovian Lévy system for such a point process can be instrumental in establishing path decompositions of the Markov process. A path decomposition, or splitting time theorem, is a result to the effect that some fragment of the trajectory of X is conditionally independent of some other fragment given suitable conditioning variables, usually with one or more of the fragments being conditionally Markovian. Millar [32] gives a survey of such results, and more recent work may be found in the papers of Getoor, Pittenger, and Sharpe: [12], [14], [15], [16], [17], [18], [36], [37], [40]. Lévy systems suitable for deriving path decompositions were constructed in varying degrees of generality by Watanabe [41] and Benveniste and Jacod [2] for the point process of jumps, and by Itô [21], Dynkin [10] and Maisonneuve [28] for point processes of excursions.
Keywords
Markov Process Point Process Exit Time Predictable Process Path DecompositionPreview
Unable to display preview. Download preview PDF.
References
- 1.M. BARLOW. Study of a filtration expanded to include an honest time. Z. Wahrscheinlichkeitstheorie verw. Gebiete 44 (1978), 307–323.CrossRefGoogle Scholar
- 2.A. BENVENISTE and J. JACOD. Systèmes de Lévy des processus de Markov. Invent. Math. 21 (1973), 183–198.CrossRefGoogle Scholar
- 3.P. BREMAUD. Point Processes and Queues: Martingale Dynamics. Forthcoming book.Google Scholar
- 4.K.L. CHUNG. On last exit times. Illinois J. Math. 4 (1960), 629–639.Google Scholar
- 5.K.L. CHUNG. On the boundary theory for Markov chains II. Acta. Math. 115 (1966), 111–163.CrossRefGoogle Scholar
- 6.K.L. CHUNG. Lectures on Boundary Theory for Markov Chains. Annals of Mathematics Studies Number 65, Princeton University Press, Princeton, 1970.Google Scholar
- 7.K.L. CHUNG. Excursions in Brownian motion. Arkiv. for Mat. 14 (1976), 155–177.CrossRefGoogle Scholar
- 8.P. COURREGE et P. PRIOURET. Temps d’arrêt d’une fonction aléatoire: relations d’equivalence associées et propriétés de décomposition. Publ. Inst. Statist. Univ. Paris 14 (1965), 245–274.Google Scholar
- 9.C. DELLACHERIE. Capacités et Processus Stochastiques. Springer-Verlag, Berlin, 1972.Google Scholar
- 10.E.B. DYNKIN. Wanderings of a Markov process. Theo. Prob. Appl. 16 (1971), 401–408.CrossRefGoogle Scholar
- 11.R.K. GETOOR. Excursions of a Markov process. Ann. Probab. 7 (1979), 244–266.CrossRefGoogle Scholar
- 12.R.K. GETOOR. Splitting times and shift functionals. Z. Wahrscheinlichkeitstheorie verw. Gebiete 47 (1979), 69–81.CrossRefGoogle Scholar
- 13.R.K. GETOOR and M.J. SHARPE. Last exit decompositions and distributions. Indiana Univ. Math. J. 23 (1973), 377–404.CrossRefGoogle Scholar
- 14.R.K. GETOOR and M.J. SHARPE. The Markov property at co-optional times. Z. Wahrscheinlichkeitstheorie verw. Gebiete 48 (1979), 201–211.CrossRefGoogle Scholar
- 15.R.K. GETOOR and M.J. SHARPE. Some random time dilations of a Markov process. Math. Zeit. 167 (1979), 187–199.CrossRefGoogle Scholar
- 16.R.K. GETOOR and M.J. SHARPE. Markov properties of a Markov process. Z. Wahrscheinlichkeitstheorie verw. Gebiete 55 (1981), 313–330.CrossRefGoogle Scholar
- 17.R.K. GETOOR and M.J. SHARPE. Excursions of dual processes. To appear.Google Scholar
- 18.R.K. GETOOR and M.J. SHARPE. Two results in dual excursions. In this volume.Google Scholar
- 19.P. GREENWOOD and J.W. PITMAN. Construction of local time and Poisson point processes from nested arrays. J. London Math. Soc. (2) 22 (1980), 182–192.CrossRefGoogle Scholar
- 20.P. GREENWOOD and J.W. PITMAN. Fluctuation identities for Levy processes and splitting at the maximum. Adv. Appl. Prob. 12 (1980), 893–902.CrossRefGoogle Scholar
- 21.K. ITO. Poisson point processes attached to Markov processes. Proc. Sixth Berkeley Symp. Math. Statist. Prob. pp. 225–239. Univ. of California Press, Berkeley, 1970.Google Scholar
- 22.J. JACOD. Calcul Stochastique et Problèmes de Martingales. Lecture Notes in Math. 714, Springer-Verlag, Berlin, 1979.Google Scholar
- 23.T. JEULIN. Semi-Martingales et Grossissement d’une Filtration. Lecture Notes in Math. 833, Springer-Verlag, Berlin, 1980.Google Scholar
- 24.T. JEULIN et M. YOR. Nouveaux résultats sur le grossissement des tribus. Ann. Sci. E.N.S. 4 e Série, t. 11 (1978), 429–443.Google Scholar
- 25.T. JEULIN et M. YOR. Sur les distributions de certaines fonctionelles du mouvement brownien. Séminaire de Probabilités XV (Univ. Strasbourg), pp. 210–226. Lecture Notes Math. 850 Springer-Verlag, Berlin, 1981.Google Scholar
- 26.B. MAISONNEUVE. Ensembles régénératifs, temps locaux et subordinateurs. Séminaire de Probabilités V (Univ. Strasbourg), pp. 147–169. Lecture Notes Math. 191. Springer-Verlag, Berlin, 1971.Google Scholar
- 27.B. MAISONNEUVE. Systèmes régénératifs. Astérisque, No. 15, Soc. Math. France, Paris, 1974.Google Scholar
- 28.B. MAISONNEUVE. Exit systems. Ann. Prob. 3 (1975), 399–411.CrossRefGoogle Scholar
- 29.B. MAISONNEUVE. On the structure of certain excursions of a Markov process. Z. Wahrshceinlichkeitstheorie verw. Gebiete 47 (1979), 61–67.CrossRefGoogle Scholar
- 30.P.A. MEYER. Processus de Poisson ponctuels, d’aprés K. Itô. Séminaire de Probabilités V (Univ. Strasbourg), pp. 177–190. Lecture Notes Math. 191, Springer-Verlag, Berlin, 1971.Google Scholar
- 31.P.A. MEYER, R.T. SMYTHE, and J.B. WALSH. Birth and death of Markov processes. Proc. Sixth Berkeley Symp. Math. Statist. Probab. vol. 3, pp. 295–306. Univ. California Press, Berkeley, 1972.Google Scholar
- 32.P.W. MILLAR. Random times and decomposition theorems. Proc. Symp. Pure Math. vol. 31, Providence, 1976.Google Scholar
- 33.P.W. MILLAR. A path decomposition for Markov processes. Ann. Prob. 6 (1978), 345–348.CrossRefGoogle Scholar
- 34.J.W. PITMAN. Occupation measures for Markov chains. Adv. Appl. Prob. 9 (1977), 69–86.CrossRefGoogle Scholar
- 35.J.W. PITMAN and M. YOR. A decomposition of Bessel bridges. To appear.Google Scholar
- 36.A.O. PITTENGER. Regular birth times for Markov processes. Ann. Prob. To appear.Google Scholar
- 37.A.O. PITTENGER and M.J. SHARPE. Regular birth and death times. Z. Wahrscheinlichkeitstheorie verw. Gebiete, to appear.Google Scholar
- 38.A.O. PITTENGER and C.T. SHIH. Coterminal familes and the strong Markov property. Trans. Amer. Math. Soc. 182 (1973), 1–42.CrossRefGoogle Scholar
- 39.L.C.G. ROGERS. Williams’ characterization of the Brownian excursion law: proof and applications. Séminaire de Probabilités XV (Univ. Strasbourg), pp. 227–250. Lecture Notes Math. 850. Springer-Verlag, Berlin, 1981.Google Scholar
- 40.M.J. SHARPE. Killing times for Markov processes. To appear.Google Scholar
- 41.S. WATANABE. On discontinuous additive functionals and Lévy measures of a Markov process. Japan J. Math. 34 (1964), 53–79.Google Scholar
- 42.M. WEIL. Conditionnement par rapport au passé strict. Séminaire de Probabilités V (Univ. Strasbourg), pp. 362–372. Lecture Notes Math. 191. Springer-Verlag, Berlin, 1971.Google Scholar
- 42.D. WILLIAMS. Path decomposition and continuity of local time for one-dimensional diffusions. Proc. London Math. Soc. 28 (1974), 738–768.CrossRefGoogle Scholar
- 43.D. WILLIAMS. Diffusions, Markov Processes, and Martingales; vol. 1: Foundations. Wiley, New York, 1979.Google Scholar