Skip to main content

Positional Cues in the Developing Eyebud of Positional Cues in the Developing Eyebud of Xenopus

  • Conference paper
Cell Interactions in Visual Development

Part of the book series: Cell and Developmental Biology of the Eye ((EYE))

  • 61 Accesses

Abstract

The formation of spatial patterns in the nervous system appears to require a complex series of interactions. In the visual system, this not only involves the patterning of neurons and glia within the eye, but also the patterning of the spatially ordered optic projections in visual centers of the brain. An ideal system for studying patterning in the optic projections is the retinotectal projection which forms the main visual pathway in lower vertebrates. In the retinotectal projection, the retinal ganglion cells in the eye project along the optic nerve and into the midbrain where their connections form a topographic map of the retina over the surface of the contralateral optic tectum. In this well ordered pattern 1) neurons in a particular part of the retina consistently project to a particular part of the tectum, and 2) neurons in neighboring positions in the retina project to neighboring positions in the tectum giving the projection a smooth internal order. Lower vertebrates are capable of regenerating their optic nerve after injury and eventually reforming this same pattern of connections. A multitude of studies has examined the ability of optic nerve fibers to consistently find their correct target region in the tectum both during development and regeneration.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Bryant, S., V. French, and P. Bryant. 1981. Distal regeneration and symmetry. Science 212:993–1002.

    Article  PubMed  CAS  Google Scholar 

  • Conway, K., K. Feiock, and R. K. Hunt. 1980. Polyclones and patterns in developing Xenopus larvae. Curr. Topics Dev. Bio. 15:216–317.

    Google Scholar 

  • Cooke, J. and R. M. Gaze. 1983. The positional coding system in the early eye rudiment of Xenopus laevis, and its modification after grafting operations. J. Embryol. exp. Morph. 77:53–71.

    PubMed  CAS  Google Scholar 

  • Fernald, R. D. 1984. Vision and Behavior in an African Cichlid fish: Combining behavioral and physiological analyses reveals how good vision is maintained during rapid growth of the eyes. American Scientist 72:58–65.

    Google Scholar 

  • Fraser, S. E. 1987. Intrinsic positional information guides the early formation of the retinotectal projection of Xenopus. Neurosci. Abst. 13(1):368.

    Google Scholar 

  • French, V., S. Bryant, and P. Bryant. 1976. Pattern regulation in epimorphic fields. Science 158:969–981.

    Article  Google Scholar 

  • Fujisawa, H. 1984. Pathways of retinotectal projection in developing Xenopus tadpoles revealed by selective labeling of retinal axons with horseradish peroxidase. Develop. Growth and Diff. 26(6):545–553.

    Article  Google Scholar 

  • Fujisawa, H., N. Tani, K. Watanabe, and Y. Ibata. 1982. Branching of regenerating retinal axons and preferential selection of appropriate branches for specific neuronal connections in the newt. Dev. Bio. 90:43–57.

    Article  CAS  Google Scholar 

  • Fujisawa, H., K. Watanabe, N. Tani, and Y. Ibata. 1981. Retinotopic analysis of fiber pathways in the regenerating retinotectal system of the adult newt Cynops pyroghaster. Brain Res. 206:27–37.

    Article  PubMed  CAS  Google Scholar 

  • Gaze, R. M. and C. Straznicky 1980. Stable programming for map orientation in disarranged embryonic eyes in Xenopus. J. Embryol. Exp. Morph. 55:143–165.

    PubMed  CAS  Google Scholar 

  • Gimlich, R. L. and J. Braun. 1985. Improved fluorescent compounds for tracing cell lineage. Dev. Bio. 109:509–514.

    Article  CAS  Google Scholar 

  • Harris, W. A. 1982. The transplantation of eyes to genetically eyeless salamanders: Visual projections and somatosensory interactions. J. Neurosci. 2:339–353.

    PubMed  CAS  Google Scholar 

  • Harris, W. A. 1984. Axonal pathfinding in the absence of normal pathways and impulse activity. J. Neurosci. 4:1153–1162.

    PubMed  CAS  Google Scholar 

  • Hollyfield, J. G. 1971. Differential growth of the neural retina in Xenopus laevis larvae. Dev. Bio. 24:264–286.

    Article  CAS  Google Scholar 

  • Holt, C. E. 1980. Cell movements in Xenopus eye development. Nature 28:850–852.

    Article  Google Scholar 

  • Holt, C. E. 1984. Does timing of axon outgrowth influence initial retinotectal topography in Xenopus? J. Neurosci. 4:1130–1152.

    PubMed  CAS  Google Scholar 

  • Holt, C. E. and W. A. Harris. 1983. Order in the initial retinotectal map in Xenopus: A new technique for labeling growing nerve fibres. Nature 301:150–152.

    Article  PubMed  CAS  Google Scholar 

  • Hunt, R. K. and M. Jacobson. 1972. Development and stability of positional information in Xenopus retinal ganglion cells. Proc. Nat. Acad. Sci. USA 69:780–783.

    Article  PubMed  CAS  Google Scholar 

  • Hunt, R. and M. Jacobson. 1973. Neuronal locus specificity: Altered pattern of spatial deployment in fused fragments of embryonic Xenopus eyes. Science 180:509–511.

    Article  PubMed  CAS  Google Scholar 

  • Ide, C. F., P. Reynolds, and R. Tompkins. 1984. Two healing patterns correlate with different neural connectivity patterns in regenerating embryonic Xenopus retina. J. Exp. Zool. 230:71–80.

    Article  PubMed  CAS  Google Scholar 

  • Ide, C. F., L. Wunsh, P. Lecat, D. Kahn, and E. Noelke. 1987. Healing modes correlate with visuotectal pattern formation in regenerating embryonic Xenopus retina. Dev. Bio. 124:316–330.

    Article  CAS  Google Scholar 

  • Jacobson, M. 1968. Development of neuronal specificity in retinal ganglion cells of Xenopus. Dev. Bio. 17:202–218.

    Article  CAS  Google Scholar 

  • Jacobson, M. 1976. Histogenesis of retina in the clawed frog with implications for the pattern of development of retinotectal connections. Dev. Bio. 103:541–545.

    CAS  Google Scholar 

  • Meyer, R. L. 1984. Target selection by surgically misdirected optic fibers in the tectum of goldfish. J. Neurosci. 4:234–250.

    PubMed  CAS  Google Scholar 

  • Nieuwkoop, P. D. and J. Faber. 1956. Normal Table of Xenopus laevis. (Daudin) Elsevier-North Holland Publishing Co., Amsterdam.

    Google Scholar 

  • O’Gorman, S., J. Kilty, and R. K. Hunt. 1987. Healing and growth of half eye “compound eyes” in Xenopus: Application of an interspecific cell marker. J. Neurosci. 7(11):3764–3782.

    PubMed  Google Scholar 

  • O’Rourke, N. A. and S. E. Fraser. 1986a. Dynamic aspects of retinotectal map formation as revealed by a vital-dye fiber-tracing technique. Dev. Bio. 114:265–276.

    Article  Google Scholar 

  • O’Rourke, N. A. and S. E. Fraser. 1986b. Pattern regulation in the eyebud of Xenopus studied with a vital-dye fiber tracing technique. Dev. Bio. 114:277–288.

    Article  Google Scholar 

  • O’Rourke, N. A. and S. E. Fraser. 1986c. Gradual appearance of a regulated projection pattern in the developing eyebud of Xenopus laevis. Neurosci. Abst. 12:543.

    Google Scholar 

  • Sakaguchi, D. S. and R. K. Murphey. 1985. Map formation in the developing Xenopus retinotectal system: an examination of ganglion cell terminal arborizations. J. Neurosci. 5:3228–3245.

    PubMed  CAS  Google Scholar 

  • Straznicky, C. and R. M. Gaze. 1971. The growth of the retina in Xenopus laevis: An autoradiographic study. J. Embryol. Exp. Morph. 26:67–79.

    PubMed  CAS  Google Scholar 

  • Thiebaud, C. H. 1983. A reliable new cell marker in Xenopus. Dev. Bio. 98:245–249.

    Article  CAS  Google Scholar 

  • Wolpert, L. 1969. Positional information and the spatial pattern of cellular differentiation. J. Theor. Bio. 25:1–47.

    Article  CAS  Google Scholar 

  • Wolpert, L. 1971. Positional information and pattern formation. Curr. Top. Dev. Bio. 6:183–224.

    Article  CAS  Google Scholar 

  • Yoon, M. G. 1975. Topographic polarity of the optic tectum studied by reimplantation of the tectal tissue in adult goldfish. Cold Spring Harbor Symp. Quant. Bio. 40:503–519.

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1988 Springer-Verlag New York Inc.

About this paper

Cite this paper

O’Rourke, N.A., Fraser, S.E. (1988). Positional Cues in the Developing Eyebud of Positional Cues in the Developing Eyebud of Xenopus . In: Hilfer, S.R., Sheffield, J.B. (eds) Cell Interactions in Visual Development. Cell and Developmental Biology of the Eye. Springer, New York, NY. https://doi.org/10.1007/978-1-4612-3920-8_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-3920-8_4

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4612-8401-7

  • Online ISBN: 978-1-4612-3920-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics