Advertisement

Togaviridae and Flaviviridae: The Alphavirases and Flaviviruses

  • Charles H. Calisher
  • Thomas P. Monath

Abstract

Diseases: Yellow fever, dengue, St. Louis encephalitis, Japanese encephalitis, Wes- selsbron, tick-borne encephalitis, louping ill, Kyasanur Forest disease, other tick- borne hemorrhagic fevers, Murray Valley encephalitis, Rocio encephalitis, equine encephalitides (eastern, western, Venezuelan), chikungunya, o’nyong-nyong, Ross River, Mayaro, Sindbis, Ockelbo.

Etiologic Agents: Yellow fever, dengue-1, dengue-2, dengue-3, dengue-4, Central Euro-pean encephalitis, St. Louis encephalitis, Japanese encephalitis, West Nile, Murray Valley encephalitis, Wesselbron, Ilheus, Rocio, Russian spring-summer encephalitis, Omsk hemorrhagic fever, louping ill, Kyasanur Forest disease, Powassan, eastern equine encephalitis, western equine encephalitis, Venezuelan equine encephalitis, Ross River, Mayaro, Sindbis, Ockelbo.

Source: Mosquitoes, ticks; Omsk hemorrhagic fever may be water-borne.

Clinical Manifestations: Fever, fever with rash, fever with rash and polyarthritis, fever with rash, myalgia, and arthralgia, hemorrhagic fever with shock, abortion, encephalitis.

Pathology: Disturbance of the integrity of microcirculation, with leakage of plasma and plasma proteins into extravascular spaces (hemorrhagic fevers); typical viral encephalitis.

Laboratory Diagnosis: Virus isolation, fourfold or greater increase or decrease in antibody in infected individuals, antigen detection or IgM antibody capture ELISA, neutralization, hemagglutination-inhibition, complement-fixation, indirect fluorescent antibody tests.

Epidemiology: Focally or widespread worldwide, dependent on distribution of virus, vec¬tors, and vertebrate hosts.

Treatment: Symptomatic, immune plasma. Prevention and Control: Prevention of bite by infected arthropod, insecticide spraying, vaccination

Keywords

Japanese Encephalitis Virus Yellow Fever Japanese Encephalitis Japanese Encephalitis Indirect Fluorescent Antibody Test 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Literature Cited

  1. Burke, D. S., W. Lorsomrudee, C. J. Leake, C. H. Hoke, A. Nisalak, V. Chongswasdi, and T. Laorakpongse. 1985. Fatal outcome in Japanese encephalitis. Am. J. Trop. Med. Hyg. 34: 1203 – 1209PubMedGoogle Scholar
  2. Burke, D. S., A. Nisalak, M. A. Ussery. 1982. AntibodyGoogle Scholar
  3. capture immunoassay detection of Japanese encephalitis virus immunoglobulin M and G antibodies in cerebrospinal fluid. J. Clin. Microbiol. 16: 1034–1042Google Scholar
  4. Calisher, C. H., V. P. Berardi, D. J. Muth, and E. E. Buff. 1986a. Specificity of immunoglobulin M and G antibody responses in humans infected with eastern and western equine encephalitis viruses: application to rapid serodiagnosis. J. Clin. Microbiol. 23: 369 – 372Google Scholar
  5. Calisher, C. H., W. Brandt, J. Casals, R. E. Shope, R. B. Tesh, and M. E. Wiebe. 1980. Recommended antigenic classification of registered arboviruses. I. Togaviridae, alphaviruses. Intervirology 14: 229 – 232PubMedCrossRefGoogle Scholar
  6. Calisher, C. H., A. O. El-Kafrawi, M. I. Al.-D. Mahmud, A. P. A. Travassos da Rosa, C. R. Bartz, M. Brummer- Korvenkontio, S. Haksohusodo, and W. Suharyono. 1986b. Complex-specific immunoglobulin M antibody patterns in humans infected with alphaviruses. J. Clin. Microbiol. 23: 155 – 159Google Scholar
  7. Calisher, C. H., M. I. Al.-D. Mahmud, A. O. El-Kafrawi, J. K. Emerson, and D. J. Muth. 1986c. Rapid and specific serodiagnosis of western equine encephalitis virus infection in horses. Am. J. Vet. Res. 47: 1296 – 1299Google Scholar
  8. Calisher, C. H., O. Meurman, M. Brummer-Korvenkontio, P. E. Halonen, and D. J. Muth. 1985. Sensitive enzyme immunoassay for detecting immunoglobulin M antibodies to Sindbis virus and further evidence that Pogosta disease is caused by a western equine encephalitis complex virus. J. Clin. Microbiol. 22: 566 – 571PubMedGoogle Scholar
  9. Calisher, C. H., and J. D. Poland. 1980. Laboratory diagnosis, p. 571-601. InT. P. Monath (ed.), St. Louis encephalitis. American Public Health Association, Washington, D.CGoogle Scholar
  10. Casals, J. 1944. Immunological relationships among central nervous system viruses. J. Exp. Med. 79: 3412013359Google Scholar
  11. Casals, J. 1957. The arthropod-borne group of animal viruses. Trans. N.Y. Acad. Sci. II. 19: 219 - 235Google Scholar
  12. Casals, J., and L. V. Brown. 1954. Hemagglutination with arthropod-borne viruses. J. Exp. Med. 99: 429 – 449PubMedCrossRefGoogle Scholar
  13. Casey, H. L. 1965. Part II. Adaptation of LBCF method to micro technique. InStandardized diagnostic complement fixation method and adaptation to micro test. Public Health Monogr. 74: 1 – 34Google Scholar
  14. Chamberlain, R. W. 1980. Epidemiology of arthropod- borne togaviruses: the role of arthropods as hosts and vectors and of vertebrate hosts in natural transmission cycles, p. 175–227. InR. W. Schlesinger (ed.), The togaviruses. Academic Press, Inc., New YorkGoogle Scholar
  15. Clarke, D. H., and J. Casals. 1958. Techniques for hemagglutination and hemagglutination-inhibition with arthropod-borne viruses. Am. J. Trop. Med. Hyg. 7: 561 – 573PubMedGoogle Scholar
  16. Dairymple, J. M. 1972. Biochemical and biophysical characteristics of Venezuelan equine encephalitis virus, p. 56–64. InVenezuelan encephalitis. Sci. Publ. No. 243. Pan American Health Organization, Washington, D.CGoogle Scholar
  17. de la Monte, S. M., A. L. Linhares, A. P. A. Travassos da Rosa, and F. P. Pinheiro. 1983. Immunoperoxidase detection of yellow fever virus after natural and experimental infections. Trop. Geogr. Med. 35: 235 – 242Google Scholar
  18. de Madrid, A. T., and J. S. Porterfield. 1974. The flaviviruses (group B arboviruses): a cross-neutralization study. J. Gen. Virol. 23: 91 – 96PubMedCrossRefGoogle Scholar
  19. Gardner, J. J., and M. G. Reyes. 1980. Pathology, p. 551–569. InT. P. Monath (ed.) St. Louis encephalitis. American Public Health Association, Washington, D.CGoogle Scholar
  20. Gardner, P. S., and J. McQuillan. 1980. Applications of immunofluorescence, 2nd ed. Butterworth, LondonGoogle Scholar
  21. Halonen, P. E., H. Sarkkinen, P. Arstila, E. Hjertsson, and E. Torfason. 1980. Four-layer radioimmunoassay for detection of adenovirus in stool. J. Clin. Microbiol. 11: 614 – 617PubMedGoogle Scholar
  22. Halstead, S. B. 1974. Etiologies of the experimental dengues of Siler and Simmons. Am. J. Trop. Med. Hyg. 23: 974 – 982PubMedGoogle Scholar
  23. Halstead, S. B., S. Rojanasuphot, and N. Sangkawibha. 1983. Original antigenic sin in dengue. Am. J. Trop. Med. Hyg. 32: 154 – 156PubMedGoogle Scholar
  24. Heinz, F. X., M. Roggendorf, H. Hofmann, C. Kunz, and F. Deinhardt. 1981. Comparison of two different enzyme immunoassays for detection of immunoglobulin M antibodies against tick-borne encephalitis virus in serum and cerebrospinal fluid. J. Clin. Microbiol. 14: 141 – 146PubMedGoogle Scholar
  25. Henchel, E. A., J. M. McCown, M. C. Seguin, M. K. Gentry, and W. E. Brandt. 1983. Rapid identification of dengue virus isolates by using monoclonal antibodies in an indirect immunofluorescence assay. Am. J. Trop. Med. Hyg. 32: 164 – 169Google Scholar
  26. Hildreth, S. W., B. J. Beatty, H. K. Maxfield, R. F. Gilfil- lan, and B. J. Rosenau. 1984. Detection of eastern equine encephalomyelitis virus and Highlands J virus antigens within mosquito pools by enzyme immunoassay (EIA). II. Retrospective field test of the EIA. Am. J. Trop. Med. Hyg. 33: 973 – 980Google Scholar
  27. Hyypia, T., P. Stalhandske, R. Vainionpaa, and U. Petters- son. 1984. Detection of enteroviruses by spot hybridization. J. Clin. Microbiol. 19: 436 – 438PubMedGoogle Scholar
  28. Karabatsos, N. (ed.). 1985. International catalogue of arboviruses including certain other viruses of vertebrates, 3rd ed. Am. Soc. Trop. Med. Hyg., San AntonioGoogle Scholar
  29. Kusano, N. 1966. Fluorescent antibody technique and Japanese encephalitis. Symposium on viral encephalitides in the Japanese, Tokyo, April 7, 1966. Psychiat. Neurol. Jap. 68: 300Google Scholar
  30. Lhuillier, M., and J.-L. Sarthou. 1983. Interet des IgM anti- amariles dans de diagnostic et la surveillance epide- miologique de la fievre jaune. Ann. Virol. (Inst. Pasteur). 134E: 349 – 359CrossRefGoogle Scholar
  31. Lindsey, H. S., C. H. Calisher, and J. H. Mathews. 1976. Serum dilution neutralization test for California group virus identification and serology. J. Clin. Microbiol. 4: 503 – 510PubMedGoogle Scholar
  32. Matthews, R. E. F. 1982. Classification and nomenclature of viruses. Fourth report of the International Committee on Taxonomy of Viruses. Intervirology 17: 1 – 199CrossRefGoogle Scholar
  33. Mendez, M. R., C. H. Calisher, H. Kruger, F. Sipan, S. Sanchez, and J. S. Lazuick. 1984. A continuing focus of yellow fever in the Apurimac River valley, Ayacucho, Peru, and the first isolation of yellow fever virus in that country. Bull. Pan. Am. Health Org. 18: 172 – 179Google Scholar
  34. Meurman, O. 1983. Detection of antiviral IgM antibodies and its problems—a review, Curr. Top. Microbiol. Immunol. 104: 101 – 131PubMedGoogle Scholar
  35. Monath, T. P. 1971. Neutralizing antibody response in the major immunoglobulin classes to yellow fever 17D vaccination of humans. Am. J. Epidemiol. 93: 122 – 129PubMedGoogle Scholar
  36. Monath, T. P., R. B. Craven, D. J. Muth, C. J. Trautt, C. H. Calisher, and S. A. Fitzgerald. 1980. Limitations of the complement-fixation test for distinguishing naturally acquired from vaccine-induced yellow fever infection in flavivirus-hyperendemic areas. Am. J. Trop. Med. Hyg. 29: 624 – 634PubMedGoogle Scholar
  37. Monath, T. P., C. B. Cropp, D. J. Muth, and C. H. Calisher. 1981a. Indirect fluorescent antibody test for the diagnosis of yellow fever. Trans. Royal Soc. Trop. Med. Hyg. 75: 282 – 286CrossRefGoogle Scholar
  38. Monath, T. P., L. J. Hill, N. V. Brown, C. B. Cropp, J. J. Schlesinger, J. F. Saluzzo, and J. R. Wands. 1986a. Sensitive and specific monoclonal immunoassay for detecting yellow fever virus in laboratory and clinical specimens. J. Clin. Microbiol. 23: 129 – 134Google Scholar
  39. Monath, T. P., R. G. McLean, C. B. Cropp, G. L. Parham, J. S. Lazuick, and C. H. Calisher. 1981b. Diagnosis of eastern equine encephalomyelitis by immunofluorescent staining of brain tissue. Am. J. Vet. Res. 42: 1418 – 1421Google Scholar
  40. Monath, T. P., and R. R. Nystrom. 1984a. Detection of yellow fever virus in serum by enzyme immunoassay. Am. J. Trop. Med. Hyg. 33: 151 – 157Google Scholar
  41. Monath, T. P., R. R. Nystrom, R. E. Bailey, C. H. Calisher, and D. J. Muth. 1984b. Immunoglobulin M antibody capture enzyme-linked immunosorbent assay for diagnosis of St. Louis encephalitis. J. Clin. Microbiol. 20: 784 – 790Google Scholar
  42. Monath, T. P., J. R. Wands, L. J. Hill, M. K. Gentry, and D. J. Gubler. 1986b. Multisite monoclonal immunoassay for dengue viruses: detection of viraemic human sera and interference by heterologous antibody. J. Gen. Virol. 67: 63 – 650CrossRefGoogle Scholar
  43. Reed, W., J. Carroll, A. Agramonte, and J. W. Lazear. 1983. Classics in infectious diseases. The etiology of yellow fever: a preliminary note. Rev. Infect. Dis. 5: 1103 – 1111PubMedCrossRefGoogle Scholar
  44. Roehrig, J. T. 1986. The use of monoclonal antibodies in studies of the structural proteins of togaviruses and flaviviruses, p. 251–278. InS. Schlesinger and M. J. Schlesinger (ed.), The Togaviridae and Flaviviridae. Plenum Publishing Corp., New YorkGoogle Scholar
  45. Rosen, L. 1981. The use of Toxorhynchitesmosquitoes to detect and propagate dengue and other arboviruses. Am. J. Trop. Med. Hyg. 30: 177 – 183PubMedGoogle Scholar
  46. Rosen, L., and D. Gubler. 1974. The use of mosquitoes to detect and propagate dengue viruses. Am. J. Trop. Med. Hyg. 23: 1153 – 1160PubMedGoogle Scholar
  47. Sabin, A. B. 1950. The dengue group of viruses and its family relationships. Bacteriol. Rev. 14: 225 – 232Google Scholar
  48. Sabin, A. B., and E. L. Buescher. 1950. Unique physico- chemical properties of Japanese B encephalitis virus hemagglutinin. Proc. Soc. Exp. Biol. Med. 74: 222 – 230PubMedGoogle Scholar
  49. Saluzzo, J. F., T. P. Monath, M. Cornet, V. Deubel, and J. P. Digoutte. 1985. Comparaison de differentes techniques pour la detection du virus de la fievre jaune dans les prelevements humains et les lots de moustiques: interet d’une methode rapide de diagnostic par ELISA. Ann. Inst. Pasteur/Virol. 136E: 115 – 129CrossRefGoogle Scholar
  50. Sarkkinen, H. K., P. E. Halonen, P. P. Arstila, and A. A. Salmi. 1981. Detection of respiratory syncytial, parainfluenza Type 2, and adenovirus antigens by radioimmunoassay and enzyme immunoassay on nasopharyngeal specimens from children with acute respiratory disease. J. Clin. Microbiol. 13: 258 – 265PubMedGoogle Scholar
  51. Sarthou, J. F., and M. Lhuillier. 1984. Diagnostic immu- noenzymatique rapide de la fievre jaune: detection directe dans le serum des malades de l’antigene amarile libre (Ag-YF) ou engage dans les immunscomplexes circulars (IgM-Ag-YF). Comm. Soc. Franc. Microbiol. Paris, February 2Google Scholar
  52. Smithburn, K. C. 1942. Differentiation of the West Nile virus from the viruses of St. Louis and Japanese B encephalitis. J. Immunol. 44: 25 – 31Google Scholar
  53. Smorodintseff, A. A. 1940. The spring-summer tick-borne encephalitis. (Synonyms: Forest Spring encephalitis). Arch. Gesamte Virusforsch. 1: 468 – 480CrossRefGoogle Scholar
  54. Theiler, M. 1957. Action of sodium desoxycholate on arthropod-borne viruses. Proc. Soc. Exp. Biol. Med. 96: 380 – 382PubMedGoogle Scholar
  55. Theofilopoulos, A. N., W. E. Brandt, P. K. Russell, and F. T. Dixon. 1976. Replication of dengue-2 virus in cultured human lymphoblastoid cells and subpopulations of human peripheral leukocytes. J. Immunol. 117: 953 – 961PubMedGoogle Scholar
  56. Tikasingh, E. S., L. Spence, and W. G. Downs. 1966. The use of adjuvant and sarcoma 180 cells in the production of mouse hyperimmune ascitic fluids to arboviruses. Am. J. Trop. Med. Hyg. 15: 219 – 226PubMedGoogle Scholar
  57. Trent, D. W. 1977. Antigenic characterization of flavivirus structural proteins separated by isoelectric focusing. J. Virol. 22: 608 – 618PubMedGoogle Scholar
  58. Varelas-Wesley, I., and C. H. Calisher. 1982. Antigenic relationships of flaviviruses with undetermined arthro- pod-borne status. Am. J. Trop. Med. Hyg. 31: 1273 – 1284PubMedGoogle Scholar
  59. Webster, L. T. 1938. Japanese B encephalitis virus: its differentiation from St. Louis encephalitis virus and its relationship to louping ill virus. J. Exp. Med. 67: 609 – 618PubMedCrossRefGoogle Scholar
  60. Webster, L. T., G. L. Fite, and A. D. Clow. 1935. Experimental studies on encephalitis. IV. Specific inactivation of virus by sera from persons exposed to encephalitis, St. Louis. J. Exp. Med. 62:827-847. Westaway, E. G., M. A. Brinton, S. Y. Gaidomovich, M. C. Horzinek, A. Igarashi, L. Kaariainen, D. K. Lvov, J. S. Porterfield, P. K. Russell, and D. W. Trent. 1985a. Togaviridae. Intervirology 24: 125 – 139Google Scholar
  61. Westaway, E. G., M. A. Brinton, S. Y. Gaidamovich, M. C. Horzinek, A. Igarashi, L. Kaariainen, D. K. Lvov, J. S. Porterfield, P. K. Russell, and D. W. Trent. 1985b. Flaviviridae Intervirology 24: 183–192Google Scholar
  62. Westaway, E. G., A. J. Della-Porta, and B. M. Reedman. 1974. Specificity of IgM and IgG antibodies after challenge with antigenically related togaviruses. J. Immunol. 112: 656 – 663PubMedGoogle Scholar
  63. World Health Organization. 1967. Arboviruses and human disease. W.H.O. Tech. Rep. Ser. No. 369Google Scholar

Copyright information

© Springer-Verlag New York Inc. 1988

Authors and Affiliations

  • Charles H. Calisher
  • Thomas P. Monath

There are no affiliations available

Personalised recommendations