Principles of Antibiotic Testing in the Laboratory

  • Daniel Amsterdam


While the earliest association of humans and antimicrobial agents may have come about through casual and later purposeful contact with soil laden with antibiotic-producing strains of Streptomyces and other Actinomyces, the first method for assessing antimicrobic susceptibility was developed by Fleming (1929) after his serendipitous observation of the action of Penicillium notatum. Using the first agar diffusion technique, the “ditch plate” (Fig. 1), he excavated a strip of agar in the shape of a ditch from a petri dish and replaced it with medium containing the extract of potential antimicrobial activity (for Fleming, the mold extract of penicillin). At right angles, he streaked various strains across the ditch. Fleming did not observe the “radial zones” of inhibition that we recognize today. Instead, he saw lanes of inhibition, and concluded that the lane in the streak of microorganisms that was furthest away from the antimicrobial-laden ditch represented activity against that particular strain (Fleming, 1929). Seemingly, Fleming was more interested in isolating “B. influenza” than inhibiting the other susceptible microorganisms.


Bactericidal Activity Antimicrobial Agent National Committee Minimal Inhibitory Concentration Clinical Laboratory Standard 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature Cited

  1. Amsterdam, D., C. Kalinka, and W. R. Bartholomew 1984. Comparative immunoassays for quantitation of tobramycin serum levels. Antimicrob. Newsletter 1:56–57.CrossRefGoogle Scholar
  2. Anhalt, J. P., and J. W. Washington II. 1985. Bactericidal tests, p. 731–745. In J. A. Washington (ed.), Laboratory procedures in clinical microbiology, 2nd ed., Springer-Verlag, New York.Google Scholar
  3. Azemun, P., T. Stall, M. Roberts, and A. L. Smith. 1981. Rapid detection of chloramphenicol resistance in Haemophilus influenzae. Antimicrob. Agents Chemother. 20:168–170.PubMedGoogle Scholar
  4. Barriere, S. L., E. Ely, J. E. Kapusnik, J. G. Gambertoglio. 1985. Analysis of a new method for assessing activity of combinations of antimicrobials: area under the bactericidal activity curve. J. Antimicrob. Chemother. 16::49–59.PubMedCrossRefGoogle Scholar
  5. Barry, A. L. 1976. The antimicrobic susceptibility test: principles and practices, p. 163–179. Lea & Febiger, Philadelphia, Pennsylvania.Google Scholar
  6. Barry, A. L., and Thornsberry, C. 1985. Susceptibility tests: Diffusion test procedures, p. 978–987. In E. H. Lennette, A. Balows, W. J. Hausler, Jr., and H. J. Shadomy (ed.), Manual of clinical microbiology, 4th ed., American Society for Microbiology, Washington, D.C.Google Scholar
  7. Bauer, A. W., W. M. M. Kirby, J. C. Sherris, and M. Turck. 1966. Antibiotic susceptibility testing by a standardized single disk method. Am. J. Clin. Pathol. 45:493–496.PubMedGoogle Scholar
  8. Buchanan, A. G., E. Witwicki, and W. L. Albritton. 1983. Serum aminoglycoside monitoring by enzyme immunoassay, biological, and fluorescence immunoassay procedures. Am. J. Med. Tech. 49:438–441.Google Scholar
  9. Cooksey, R. C., L. W. Mayer. 1987. Identification of antibacterial resistance mechanisms: Advances in laboratory assays. Antimicrob. Newsletter 4:57–66.CrossRefGoogle Scholar
  10. Cooper, K. E. 1963. The theory of antibiotic inhibition zones, p. 1–86. In F. Kavanagh (ed.), Analytical microbiology, Academic, Press, New York.Google Scholar
  11. Craig, W. A., and S. Gudmundsson. 1985. The postantibiotic effect, p. 515–536. In V. Lorian (ed.), Antibiotic in laboratory medicine, 2nd ed., William & Wilkins, Baltimore, Maryland.Google Scholar
  12. Daschner, F. D. 1985. Antibiotics and host defense with special reference to phagocytosis by human polymorphonuclear leukocytes. J. Antimicrob. Chemother. 16:135–141.PubMedCrossRefGoogle Scholar
  13. Drake, T. A., and C. J. Hackbarth, M. Sande. 1983. Value of serum tests in combined drug therapy of endocarditis. Antimicrob. Agents Chemother. 24:653–657.PubMedGoogle Scholar
  14. Eagle, H., R. Fleischman, and A. D. Musselman. 1950. Effect of schedule of administration on the therapeutic efficacy of penicillin. Am. J. Med. 9:280–299.PubMedCrossRefGoogle Scholar
  15. Edberg, S. C., A. L. Barry, and L. S. Young. 1984. Cumitech 20. Therapeutic drug monitoring: antimicrobial agents. J. A. Morello (Coordinating ed.), American Society for Microbiology, Washington, D.C.Google Scholar
  16. Ericsson, H. M., and J. C. Sherris. 1971. Antibiotic sensitivity testing. Report of an international collaborative study. Acta Pathol. Microbiol. Scand. Sect. [B] Suppl:217.Google Scholar
  17. Eng, R. H. K., C. M. Cherubin, S. M. Smith, and F. Buccini. 1985. Inoculum effect of ß-lactam antibiotics in Enterobacteriaceae. Antimicrob. Agents Chemother. 28:601–606.PubMedGoogle Scholar
  18. Federal Register. 1961. Antibiotics intended for use in the laboratory diagnosis of disease. Fed. Register 26:2596.Google Scholar
  19. Federal Register. 1972. Rules and regulations. Antibiotic susceptibility disks. Fed. Register 37:20525–20529.Google Scholar
  20. Federal Register. 1973. Rules and regulations. Antibiotic susceptibility disks: correction. Fed. Register 38:2576.Google Scholar
  21. Fleming A. 1929. On the antibacterial action of cultures of a penicillium with special reference to their use in the isolation of B. influenzae. Br. J. Exp. Pathol. 10: 226–236.Google Scholar
  22. Forsgren, A., and H. Gnarpe. 1982. The effect of antibacterial agents on the association between bacteria and leukocytes. Scand. J. Infect. Dis. 33 (suppl.): 115–120.Google Scholar
  23. Foster, J. W., and H. B. Woodruff. 1943. Microbiological aspects of penicillin. J. Bacteriol. 46 :187–202.PubMedGoogle Scholar
  24. Handwerger, S., and A. Tomasz. 1985. Antibiotic tolerance among clinical isolates of bacteria. Rev. Infect. Dis. 7 :368–386.PubMedCrossRefGoogle Scholar
  25. Hewitt, W. L., and M. C. McHenry. 1978. Blood level determinations of antimicrobial drugs: some clinical considerations. Med. Clin. North Am. 62 :1119–1140.PubMedGoogle Scholar
  26. Horne, D. and A. Tomasz. 1981. Hypersusceptibility of penicillin-treated group B streptococci to bactericidal activity of human polymorphonuclear leukocytes. Antimicrob. Agent Chemother. 19 :745–753.Google Scholar
  27. Jones, R. N., A. L. Barry, T. L. Gavan, and J. A. Washington II. 1985. Susceptibility tests: microdilution and macrodilution broth procedures, p. 972–977. In E. H. Lennette, A. Balows, W. J. Hausler, Jr., H. J. Shadomy (ed.). Manual of clinical microbiology, 4th ed., American Society for Microbiology, Washington, D.C.Google Scholar
  28. Kunin, C. M. 1981. Dosage schedules of antimicrobial agents: a historial review. Rev. Infect. Dis. 3:4–11.PubMedCrossRefGoogle Scholar
  29. Lorian, V. 1986. Effect of low antibiotic concentrations on bacteria, p. 596–668. In V. Lorian (ed.), Antibiotics in laboratory medicine, 2nd ed., Williams & Wilkins, Baltimore, Maryland.Google Scholar
  30. Metzler, C. M., and R. M. De Haan. 1974. Susceptibility of anaerobic bacteria: statistical and clinical considerations. J. Infect. Dis. 130:588–594.PubMedCrossRefGoogle Scholar
  31. Miller, J. M., B. V. Andersen, and S. P. Caudill. 1986. New quality control frequency guidelines for antimicrobic susceptibility testing. Antimicrob. Newsletter 3:77–79.CrossRefGoogle Scholar
  32. National Committee for Clinical Laboratory Standards. 1984. Performance standards for antimicrobial disk susceptibility tests. NCCLS publication M2–A3, 3rd ed., National Committee for Clinical Laboratory Standards, Villanova, Pennsylvania.Google Scholar
  33. National Committee for Clinical Laboratory Standards. 1985. Dilution procedures for susceptibility testing of aerobic bacteria. NCCLS publication M7–A, National Committee for Clinical Laboratory Standards, Villanova, Pennsylvania.Google Scholar
  34. National Committee for Clinical Laboratory Standards. 1986a. Evaluating production lots of dehydrated Mueller-Hinton agar; proposed standard. NCCLS publication M6–P, National Committee for Clinical Laboratory Standard, Villanova, Pennsylvania.Google Scholar
  35. National Committee for Clinical Laboratory Standards. 1986b. Performance standards for antimicrobial susceptibility testing. NCCLS publication M100–S, National Committee for Clinical Laboratory Standards, Villanova, Pennsylvania.Google Scholar
  36. National Committee for Clinical Laboratory Standards. 1987a. Methodology for the serum bactericidal test; proposed guideline. NCCLS document M21–P, National Committee for Clinical Laboratory Standards, Villanova, Pennsylvania.Google Scholar
  37. National Committee for Clinical Laboratory Standards. 1987b. Methods for determining bactericidal activity of antimicrobial activity of antimicrobial agents; proposed guideline. NCCLS document M26–P, National Committee for Clinical Laboratory Standards, Villanova, Pennsylvania.Google Scholar
  38. Rahal, J. R. 1978. Antibiotic combinations: the clinical relevance of synergy and antagonism. Medicine 57:179–195.PubMedCrossRefGoogle Scholar
  39. Reed, L. J., and H. Muench. 1938. A simple method of estimating fifty percent endpoints. Am. J. Hyg. 27:493–497.Google Scholar
  40. Reller, L. B., F. D. Schoenknecht, and M. A. Kenny. 1974. Antibiotic testing of P. aeruginosa: selection of a control strain and criteria for magnesium and calcium content in media. J. Infect. Dis. 130:454–463.PubMedCrossRefGoogle Scholar
  41. Robinson, A., R. C. Bartlett, and M. F. Mazens. 1985. Antimicrobial synergy testing based on antibiotic levels, minimal bactericidal concentration, and serum bactericidal activity. Am. J. Clin. Pathol. 84:328–333.PubMedGoogle Scholar
  42. Sabath, L. D., J. I. Casey, P. A. Ruch, L. I. Stumpf, and M. Finland. 1971. Rapid microassay of gentamicin, kanamycin, neomycin, streptomycin, and vancomycin in serum or plasma. J. Lab. Clin. Med. 78:457–463.PubMedGoogle Scholar
  43. Schlichter, J. G., and H. MacLean. 1947. A method of determining the effective therapeutic level in the treatment of subacute bacterial endocarditis with penicillin. Am. Heart J. 34:209–211.PubMedCrossRefGoogle Scholar
  44. Schmidt, L. H. 1987. The MIC50/MIC90: assessments of in vitro activities of antimicrobial agents that facilitate comparative agent-agent and agent-species susceptibility comparisons. Antimicrob. Newsletter 4:1–8.CrossRefGoogle Scholar
  45. Schneierson, S. S., and D. Amsterdam. 1959. A simplified tube procedure for the routine determination of bacterial sensitivity to antibiotics. Am. J. Clin. Pathol. 31:81–86.PubMedGoogle Scholar
  46. Schoenknecht, F. D., L. D. Sabath, and C. Thornsberry. 1985. Susceptibility tests: special tests, p. 1000–1008. In E. H. Lennette, A. Balows, W. H. Hausler, Jr., and H. J. Shadomy (ed.), Manual of clinical microbiology, 3rd ed., American Society for Microbiology, Washington, D.C.Google Scholar
  47. Sherris, J. C. 1986. Problems in in vitro determination of antibiotic tolerance in clinical isolates. Antimicrob. Agent Chemother. 30:633–637.Google Scholar
  48. Stevens, P., L. S. Young, and W. L. Hewitt. 1975. Radioimmunoassay, radioenzymatic assay and microbioassay of gentamicin: a comparative study. J. Lab. Clin. Med. 86:349–359.PubMedGoogle Scholar
  49. Stratton, C. W., M. P. Weinstein, and L. B. Reller. 1982. Correlation of serum bactericidal activity with antimicrobial agent level and minimal bactericidal concentration. J. Infect. Dis. 145:160–168.PubMedCrossRefGoogle Scholar
  50. Tenover, F. C. 1986. Studies of antimicrobial resistance genes using DNA probes. Antimicrob. Agents Chemother. 29:721–725.PubMedGoogle Scholar
  51. Thornsberry, C. 1984. Methicillin-resistant (heteroresistant) staphylococci. Antimicrob. Newsletter 1:43–47.CrossRefGoogle Scholar
  52. Tuomanen, E. 1986. Phenotype tolerance. The search for ß-lactam antibiotics that kill nongrowing bacteria. Rev. Infect. Dis. 8(suppl.):S279–S291.PubMedCrossRefGoogle Scholar
  53. Vincent, J. G., and H. W. Vincent. 1944. Filter paper modification of the Oxford cup penicillin determination. Proc. Soc. Exp. Biol. Med. 55:162–164.Google Scholar
  54. Washington, J. A. II. 1985. Susceptibility tests: agar dilution, p. 967–971. In E. H. Lennette, A. Balows, W. J. Hausler, Jr., and H. J. Shadomy (ed.), Manual of clinical microbiology, 4th ed., Americal Society for Microbiology, Washington, D.C.Google Scholar
  55. Weinstein, M. P., C. W. Stratton, A. Ackley, H. B. Hawley, P. A. Robinson, B. D. Fisher, D. V. Alcid, D. S. Stephens, and L. B. Reller. 1985. Multicenter collaborative evaluation of a standardized serum bactericidal test as a prognostic indicator in infective endocarditis. Am. J. Med. 78:262–269.PubMedCrossRefGoogle Scholar
  56. Weinstein, M. P., C. W. Stratton, and L. B. Reller. 1986. Current status of the serum bactericidal test as a monitor of therapeutic efficacy in serious infections. Antimicrob. Newsletter 2:9–14.CrossRefGoogle Scholar
  57. Wolfson, J. S. and M. N. Swartz. 1985. Serum bactericidal activity as a monitor of antibiotic therapy. N. Engl. J. Med. 312:969–974.Google Scholar
  58. World Health Organization. 1961. Standardization of methods for conducting microbic sensitivity tests. Second report of the Expert Committee on Antibiotics, p. 1–24. World Health Organization Technical Reports Series No. 210.Google Scholar

Copyright information

© Springer-Verlag New York Inc. 1988

Authors and Affiliations

  • Daniel Amsterdam

There are no affiliations available

Personalised recommendations