Advertisement

Numerical Prediction of Internal Flows

  • Egon Krause
Conference paper
Part of the The IMA Volumes in Mathematics and Its Applications book series (IMA, volume 12)

Abstract

Prediction of internal flows by numerical solution of the conservation equations for mass, momentum, and energy is discussed for several geometrical simple shapes. The problems addressed are the following: Flows in spherical and cylindrical gaps with Taylor-vortices; flows in rotating cylinders with change of angular velocity; flows in bifurcated pipes, and finally, vortical flows in cylinders of piston engines. Interpretation of the characteristic flow phenomena in comparison with experimental data is emphasized in favour of the description of integration methods.

Keywords

Secondary Flow Vortex Structure Compressible Flow Internal Flow Vortex Formation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    K. Bühler, “Strömungsmechanische Instabilitäten zäher Medien im Kugelspalt”, Habilitationsschrift, Universität Friedericiana, Karlsruhe, (1983).Google Scholar
  2. [2]
    E. Krause, “Computation of Confined Vortical Flows”, to appear in Annual Review of Numerical Fluid Mechanics and Heat Transfer.Google Scholar
  3. [3]
    H. Fasel, and O. Booz, “Numerical Investigation of Supercritical Taylor-Vortex Flow for a Wide Gap. J. Fluid Mech., 138, 21–58, (1984).ADSzbMATHCrossRefGoogle Scholar
  4. [4]
    G. Schrauf, “Lösungen der Navier-Stokes-Gleichungen für stationäre Strömungen im Kugelspalt. Abhandl. Aerodyn. Institut, RWTH Aachen, Heft 27, 24–34, (1985).Google Scholar
  5. [5]
    H. B. Keller, “Numerical Solution of Bifurcation and Non-Linear-Eigen-Value Problems”, in P. Rabinowik (ed.), Applications of Bifurcation Theory, Academic Press, New York, 359–384, (1977).Google Scholar
  6. [6]
    H. Eckstein, B. Binninger, “Private Communication”, Aerodynamisches Institut, (1985).Google Scholar
  7. [7]
    M. P. Escudier, “Observations of the Flow Produced in a Cylindrical Container by a Rotating Endwall”, Experiments in Fluids, 2, 109–196, (1984).CrossRefGoogle Scholar
  8. [8]
    A. Vornberger, “Numerische Simulation des Abklingvorganges eines Wirbels zwischen festen Wänden”, Diplomarbeit, RWTH Aachen, (1984).Google Scholar
  9. [9]
    A. Merten, “Berechnung von Strömungs- und Diffusionsvorgängen in Gaszentrifugen”, Dissertation RWTH Aachen, (1986).Google Scholar
  10. [10]
    A. Merten, D. Hänel, “Implicit Solution of the Unsteady Navier-Stokes Equations for the Flow in a Gas Centrifuge”, Proc. of the Sixth Workshop on Gases in Strong Rotation, Tokyo, (1985).Google Scholar
  11. [11]
    W. Limberg, E. Krause, H. Weiß, “Untersuchung der Strömungsausbildung in Dralleinlaßkanälen und Zylindern”, SFB 224 “Motorische Verbrennung”, Arbeits- und Ergebnisbericht (1986), RWTH Aachen.Google Scholar
  12. [12]
    E. Krause, W. Limberg, H. Henke, B. Binninger, M. Jeschke, “Untersuchung wirbelbehafteter kompressibler Strömungen in Zylindern von Kolbenmotoren”, SFB 224 “Motorische Verbrennung”, Arbeits- und Ergebnisbereicht (1986), RWTH Aachen.Google Scholar
  13. [13]
    R. Beam, R. F. Warming, “Implicit Finite Difference Algorithm for Hyperpolic Systems in Conservation-Law-Form”, J. Compr. Physics, 22, 87–110, (1976).MathSciNetADSCrossRefGoogle Scholar
  14. [14]
    H. Henke, “Lösung der Euler-Gleichungen mit der Methode der angenäherten Faktorisierung”, Dissertation RWTH Aachen, (1986).Google Scholar

Copyright information

© Springer-Verlag New York Inc. 1988

Authors and Affiliations

  • Egon Krause
    • 1
  1. 1.Aerodynamisches InstitutRWTH AachenAachenWest Germany

Personalised recommendations