Advertisement

On the numerical simulation of turbulent flows around vehicles

  • F. Hecht
  • O. Pironneau
Conference paper
Part of the The IMA Volumes in Mathematics and Its Applications book series (IMA, volume 12)

Abstract

A finite element method for the simulation of Navier-Stokes flows is presented. Error estimates are available for this numerical method; they show that turbulence modelling is necessary beyond a critical Reynolds number. In the near wake of the vehicle the classical turbulence models like the k-ε model are not very good because the flow is essentially transient. The MPP model is proposed because it is based on the fact that the flow has two length scales.

Keywords

Computational Fluid Dynamics Critical Reynolds Number Karman Vortex Street Piecewise Affine Function Divergence Free Function 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    D. McLaughlin, G. Papanicolaou, O. Pironneau: Convection of microstructures. SIAM J. Appl. Math. 45, (1985), 780–797.MathSciNetADSzbMATHCrossRefGoogle Scholar
  2. [2]
    J.L. Lions: Quelques méthodes des résolutions des problèmes non linéaires, Dunod, (1969).Google Scholar
  3. [3]
    O. Ladyzhenskaya: Mathematical Theory of Viscous Incompressible Flow. Gordon and Breach, New-York (1963).zbMATHGoogle Scholar
  4. [4]
    V. Girault, P.A. Raviart: Navier-Stokes equations. Springer series in computational mathematics (1986).zbMATHGoogle Scholar
  5. [5]
    F. Thomasset: Implementation of F.E.M. for Navier-Stokes equations. Springer series in computational physics (1981).Google Scholar
  6. [6]
    C. Bernardi, G. Raugel: A conforming F.E.M. for the time dependant Navier-Stokes equations. Report 84034, Labo. Numer. Anal., University Paris 6.Google Scholar
  7. [7]
    O. Pironneau: On the transport diffusion algorithm and its applications to the Navier-Stokes equations. Numer. Math. 38 (1982), pp. 309–332.MathSciNetzbMATHCrossRefGoogle Scholar
  8. [8]
    S. Suli: Lagrange Galerkin methods. Internal report, Univ. of Oxford (1985).Google Scholar
  9. [9]
    R. Glowinski: Numerical methods for nonlinear variational problems. Springer lecture Notes in Comp. Physics, 1984.zbMATHGoogle Scholar
  10. [10]
    J. Cahouet: Computational Fluid Dynamics. Lecture Séries in Von Karman Institute, 1986–05, March 3,7, Rhode St Genèse (Belgium) 1986.Google Scholar
  11. [11]
    L. Alpern: Condition aux limites non absorbantes; thèse, Université Paris 6, 1985.Google Scholar
  12. [12]
    O. Pironneau: Conditions aux limites sur la pression pour les équations de Navier-Stokes. Note CRAS 30319, 1986, p. 403.Google Scholar
  13. [13]
    R. Verfurth: Finite element approximations of stationnary Navier-Stokes equations with slip boundary conditions, Numer. Math, (à paraître).Google Scholar
  14. [14]
    F. El Dabaghi et O. Pironneau: Stream vectors in 3D aerodynamics, Numer. Math., 1986, 48, pp. 581–589.CrossRefGoogle Scholar
  15. [15]
    L. Rosenhead: Laminar boundary layers, Oxford University Press, 1966.Google Scholar
  16. [16]
    A.S. Monin, A.M. Yaglom, Statistical Fluid Mechanics of Turbulence, Vol.2, MIT Press (1985).Google Scholar
  17. [17]
    J.S. Smagorinsky: Mon Weather Rev. 91, 99–164.Google Scholar
  18. [18]
    B.E. Launder & D.B. Spalding: Mathematical models of turbulence. Academic Press, 1972.zbMATHGoogle Scholar
  19. [19]
    D. Laurence: A computational method for the determination of the flow field around vehicles. LNH-EDF Chatou-France.Google Scholar
  20. [20]
    T. Chacon, O. Pironneau: On the mathematical foundations of the k-ε turbulent model. To appear.Google Scholar
  21. [21]
    T. Chacon: Etude d’un modèle pour la convection des microstructures. Third Cycle Thesis, Univ. Sevilla (SPAIN). Sept. 1984.Google Scholar
  22. [22]
    M. Bercovier, O. Pironneau, V. Sastri: Finite elements and characteristics. Applied Math. Model, 1983, Vol.7, pp. 89–96.MathSciNetzbMATHCrossRefGoogle Scholar
  23. [23]
    A. Priestly: Lagrange and characteristics Galerkin methods, Ph.D. Thesis, Oxford University, 1986.Google Scholar
  24. [24]
    C. Begue, J. Périaux, P. Perrier, C. Pouletty: Simulation numérique d’écoulements turbulents dans les entrées d’air, 22ème Colloque d’Aérodynamique Appliquée. Lille 1985.Google Scholar

Copyright information

© Springer-Verlag New York Inc. 1988

Authors and Affiliations

  • F. Hecht
    • 1
  • O. Pironneau
    • 2
  1. 1.INRIALe ChesnayFrance
  2. 2.University of Paris 6 and INRIAFrance

Personalised recommendations