Vortex Methods for the Incompressible Euler and Navier-Stokes Equations

  • G. H. Cottet
  • S. Mas-Gallic
  • P. A. Raviart
Part of the The IMA Volumes in Mathematics and Its Applications book series (IMA, volume 12)


We present in this paper a fairly general mathematical analysis of the vortex method of approximation of the Euler equations for an incompressible fluid flow. We also discuss some recent methods of numerical approximation of viscous terms using the vortex method.


Euler Equation Particle Method Viscous Term Vortex Method Particle Approximation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    C. Anderson and C. Greengard, “On vortex methods”, SIAM J. Numer. Anal., 22, 413–440 (1985).MathSciNetADSzbMATHCrossRefGoogle Scholar
  2. 2.
    J.T. Beale, “A convergent 3-D vortex method with grid-free stretching”, Preprint.Google Scholar
  3. 3.
    J.T. Beale and A. Majda, “Vortex methods I: convergence in three dimensions”, Math. Comp., 39, 1–27 (1982).MathSciNetADSzbMATHGoogle Scholar
  4. 4.
    J.T. Beale and A. Majda, “Vortex methods II: higher accuracy in two and three dimensions”, Math. Comp., 39, 29–52 (1982).MathSciNetzbMATHGoogle Scholar
  5. 5.
    J.U. Brackbill and H.M. Ruppel, “FLIP: a method for adaptively zoned, particle-in-cell calculations of fluid flows in two dimensions”, J. Comput. Phys., 65, 314–343 (1986).MathSciNetADSzbMATHCrossRefGoogle Scholar
  6. 6.
    J.P. Choquin and G.H. Cottet, “Convergence of the vortex method with nonsmooth initial data”, Preprint.Google Scholar
  7. 7.
    J.P. Choquin and S. Huberson, “Particle simulation of viscous flow”, submitted to Computers and Fluids.Google Scholar
  8. 8.
    J.P. Choquin and B. Lucquin, “Accuracy of the deterministic particle method for Navier-Stokes equations”, Preprint.Google Scholar
  9. 9.
    A.J. Chorin, “Numerical study of slightly viscous flow”, J. Fluid Mech., 57, 785–796 (1973).MathSciNetADSCrossRefGoogle Scholar
  10. 10.
    G.H. Cottet, “Méthodes particulates pour l’équation d’Euler dans le plan”, Thèse de 3ème cycle, Université Pierre et Marie Curie, Paris (1982).Google Scholar
  11. 11.
    G.H. Cottet, “Convergence of a vortex-in-cell method for the two-dimensional Euler equations”, Math. Comp., to appear.Google Scholar
  12. 12.
    G.H. Cottet, “A new approach for the analysis of the vortex method in two and three dimensions”, Preprint.Google Scholar
  13. 13.
    G.H. Cottet and S. Mas-Gallic, “A particle method to solve transport-diffusion equations II: the Navier-Stokes equations”, Preprint.Google Scholar
  14. 14.
    G.H. Cottet and P.A. Raviart, “An analysis of particle-in-cell methods”, in preparation.Google Scholar
  15. 15.
    R. Diperna and A. Majda, “Concentrations in regularizations for 2D-incompressible flow, Preprint.Google Scholar
  16. 16.
    R.A. Gingold and J.J. Monaghan, “Shock simulation by the particle method S.P.H.”, J. Comput. Phys., 52, 374–389 (1983).ADSzbMATHCrossRefGoogle Scholar
  17. 17.
    C. Greengard, “Convergence of the vortex filament method”, Preprint.Google Scholar
  18. 18.
    O. Hald, “The convergence of vortex methods II”, SIAM J. Numer. Anal., 16, 726–755 (1979).MathSciNetADSzbMATHCrossRefGoogle Scholar
  19. 19.
    S. Mas-Gallic and P.A. Raviart, “A particle method for first order symmetric systems”, Numer. Math., to appear.Google Scholar
  20. 20.
    S. Mas-Gallic and P.A. Raviart, “Particle approximation of convection-diffusion problems”, submitted to Math. Comp.Google Scholar
  21. 21.
    P.A. Raviart, “An analysis of particle methods”, in Numerical Methods in Fluid Dynamics (F. Brezzi ed.), Lecture Notes in Mathematics, vol. 1127, Springer Verlag, Berlin (1985).CrossRefGoogle Scholar
  22. 22.
    J. Soler, “On the vortex filament methods”, Preprint.Google Scholar

Copyright information

© Springer-Verlag New York Inc. 1988

Authors and Affiliations

  • G. H. Cottet
    • 1
  • S. Mas-Gallic
    • 2
  • P. A. Raviart
    • 1
    • 2
  1. 1.Centre de Mathématiques AppliquéesEcole PolytechniquePalaiseau CedexFrance
  2. 2.Analyse Numérique, T.55Université Pierre et Marie CurieParis Cedex 05France

Personalised recommendations