On the Accuracy of Vortex Methods at Large Times

  • J. Thomas Beale
Part of the The IMA Volumes in Mathematics and Its Applications book series (IMA, volume 12)


Vortex methods simulate incompressible flow, without viscosity or at high Reynolds number, by a collection of computational elements of vorticity which are transported along computed particle paths. The velocity field can be computed from the vorticity in order to move the elements forward in time. Here we will survey the formulation and convergence theory of such methods, primarily for inviscid flow without boundaries in two or three dimensions. We also discuss a modification of the basic method intended to improve accuracy at later times and illustrate its performance with a simple test problem. It is found that the error is significantly reduced in this case. This modified method can be shown to converge, and details of the proof will be given elsewhere. Very similar ideas have been experimented with by Chris Anderson, and it is a pleasure to thank him for his helpful comments and suggestions.


Velocity Field Particle Velocity Point Vortex Velocity Error Inviscid Flow 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    C. Anderson and C. Greengard, On vortex methods, SIAM J. Numer. Anal. 22 (1985), 413–40.MathSciNetADSzbMATHCrossRefGoogle Scholar
  2. 2.
    C. Anderson, A vortex method for flows with slight density variations, J. Comp. Phys. 61 (1985), 417–32.ADSzbMATHCrossRefGoogle Scholar
  3. 3.
    C. Anderson, A method of local corrections for computing the velocity field due to a distribution of vortex blobs, J. Comp. Phys. 62 (1986), 111–23.ADSzbMATHCrossRefGoogle Scholar
  4. 4.
    C. Bardos, M. Bercovier, and O. Pironneau, The vortex method with finite elements, Math. Comp. 36 (1981), 119–36.MathSciNetADSzbMATHCrossRefGoogle Scholar
  5. 5.
    J. T. Beale and A. Majda, Vortex methods, I: Convergence in three dimensions, Math. Comp. 39 (1982), 1–27.MathSciNetADSzbMATHGoogle Scholar
  6. 6.
    J. T. Beale and A. Majda, Vortex methods, II: Higher order accuracy in two and three dimensions, Math. Comp. 39 (1982), 29–52.MathSciNetzbMATHGoogle Scholar
  7. 7.
    J. T. Beale and A. Majda, High order accurate vortex methods with explicit velocity kernels, J. Comput. Phys. 58 (1985), 188–208.ADSzbMATHCrossRefGoogle Scholar
  8. 8.
    J. T. Beale and A. Majda, Vortex methods for fluid flow in two or three dimensions, Contemp. Math. 28 (1984), 221–229.MathSciNetGoogle Scholar
  9. 9.
    J. T. Beale, A convergent 3-D vortex method with grid-free stretching, Math. Comp. 46 (1986), 401–24 and S15–S20.MathSciNetADSzbMATHGoogle Scholar
  10. 10.
    Benfatto and Pulvirenti, Convergence of Chorin-Marsden product formula in the half-plane, Commun. Math. Phys. 106 (1986), 427–58.MathSciNetADSzbMATHCrossRefGoogle Scholar
  11. 11.
    C. Chiu and R. A. Nicolaides, Convergence of a higher order vortex method for the two and three dimensional incompressible Euler equations, preprint.Google Scholar
  12. 12.
    A. J. Chorin, Numerical study of slightly viscous flow, J. Fluid Mech. 57 (1973), 785–96.MathSciNetADSCrossRefGoogle Scholar
  13. 13.
    A. J. Chorin and J. E. Marsden, A Mathematical Introduction to Fluid Mechanics, Springer-Verlag, New York, 1979.zbMATHGoogle Scholar
  14. 14.
    A. J. Chorin, Vortex models and boundary layer instability, SIAM J. Sci. Statist. Comput 1 (1980), 1–21.MathSciNetzbMATHCrossRefGoogle Scholar
  15. 15.
    G. H. Cottet, Méthodes particulaires pour l’équation d’Euler dans le plan, These de 3e cycle, Université P. et M. Curie, Paris, 1982.Google Scholar
  16. 16.
    G. H. Cottet, Convergence of a vortex in cell method for the two dimensional Euler equations, to appear in Math. Comp.Google Scholar
  17. 17.
    G. H. Cottet, On the convergence of vortex methods in two and three dimensions, preprint, 1985.Google Scholar
  18. 18.
    G. H. Cottet and S. Mas-Gallic, A particle method to solve transport-diffusion equations, Part 1: the linear case, preprint, 1985.Google Scholar
  19. 19.
    R. Franke, Scattered data interpolation: tests of some methods, Math. Comp. 38 (1982), 181–200.MathSciNetzbMATHGoogle Scholar
  20. 20.
    A. F. Ghoniem and J. A. Sethian, Dynamics of turbulent structure in recirculating flow; a computational study, preprint, 1984.Google Scholar
  21. 21.
    A. F. Ghoniem and Y. Gagnon, Vortex simulation of laminar recirculating flow, preprint, 1985.Google Scholar
  22. 22.
    J. Goodman, Convergence of the random vortex method, preprint.Google Scholar
  23. 23.
    C. Greengard, Three-Dimensional Vortex Methods, Ph.D. thesis, Univ. of Calif., Berkeley, 1984.Google Scholar
  24. 24.
    C. Greengard, Convergence of the vortex filament method, Math. Comp. 47 (1986), 387–98.MathSciNetzbMATHCrossRefGoogle Scholar
  25. 25.
    L. Greengard and V. Rokhlin, A fast algorithm for particle simulations, preprint, 1986.Google Scholar
  26. 26.
    O. Hald and V. Del Prete, Convergence of vortex methods for Euler’s equations, Math. Comp. 32 (1978), 791–809.MathSciNetADSzbMATHGoogle Scholar
  27. 27.
    O. Hald, The convergence of vortex methods, II, SIAM J. Numer. Anal. 16 (1979), 726–55.MathSciNetzbMATHCrossRefGoogle Scholar
  28. 28.
    O. Hald, Convergence of vortex methods for Euler’s equations III, to appear in SIAM J. Numer. Anal.Google Scholar
  29. 29.
    O. Hald, Convergence of a random method with creation of vorticity, preprint, 1984.Google Scholar
  30. 30.
    R. Hockney and J. Eastwood, Computer Simulation Using Particles, McGraw-Hill, New York, 1981.Google Scholar
  31. 31.
    A. Leonard, Vortex methods for flow simulations, J. Comput. Phys. 37 (1980), 289–335.MathSciNetADSzbMATHCrossRefGoogle Scholar
  32. 32.
    A. Leonard, Computing three-dimensional incompressible flows with vortex elements, Ann. Rev. of Fluid Mech. 17 (1985), 523–59.ADSCrossRefGoogle Scholar
  33. 33.
    D.-G. Long, Convergence of the random vortex method in one and two dimensions, Ph.D. thesis, Univ. of Calif., Berkeley, 1986.Google Scholar
  34. 34.
    C. Marchioro and M. Pulvirenti, Hydrodynamics in two dimensions and vortex theory, Comm. Math. Phys. 84 (1982), 483–503.MathSciNetADSzbMATHCrossRefGoogle Scholar
  35. 35.
    Y. Nakamura, A. Leonard, and P. Spalart, Vortex simulation of an inviscid shear layer, AIAA/ASME Third Joint Thermophysics, Fluids, Plasma and Heat Transfer Conference, 1982.Google Scholar
  36. 36.
    M. Perlman, On the accuracy of vortex methods, J. Comput. Phys. 59 (1985), 200–23.MathSciNetADSzbMATHCrossRefGoogle Scholar
  37. 37.
    P. A. Raviart, An Analysis of particle methods, CIME Course, Como, Italy, 1983.Google Scholar
  38. 38.
    P. R. Spalart and A. Leonard, Computation of separated flows by a vortex-tracing algorithm, AIAA 14th Fluid and Plasma Dynamics Conference, 1981.Google Scholar
  39. 39.
    J. P. Choquin and B. Lucquin, Accuracy of the deterministic particle method for Navier-Stokes equations, preprint.Google Scholar

Copyright information

© Springer-Verlag New York Inc. 1988

Authors and Affiliations

  • J. Thomas Beale
    • 1
  1. 1.Department of MathematicsDuke UniversityDurhamUSA

Personalised recommendations