Skip to main content

On the Accuracy of Vortex Methods at Large Times

  • Conference paper

Part of the book series: The IMA Volumes in Mathematics and Its Applications ((IMA,volume 12))

Abstract

Vortex methods simulate incompressible flow, without viscosity or at high Reynolds number, by a collection of computational elements of vorticity which are transported along computed particle paths. The velocity field can be computed from the vorticity in order to move the elements forward in time. Here we will survey the formulation and convergence theory of such methods, primarily for inviscid flow without boundaries in two or three dimensions. We also discuss a modification of the basic method intended to improve accuracy at later times and illustrate its performance with a simple test problem. It is found that the error is significantly reduced in this case. This modified method can be shown to converge, and details of the proof will be given elsewhere. Very similar ideas have been experimented with by Chris Anderson, and it is a pleasure to thank him for his helpful comments and suggestions.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. C. Anderson and C. Greengard, On vortex methods, SIAM J. Numer. Anal. 22 (1985), 413–40.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  2. C. Anderson, A vortex method for flows with slight density variations, J. Comp. Phys. 61 (1985), 417–32.

    Article  ADS  MATH  Google Scholar 

  3. C. Anderson, A method of local corrections for computing the velocity field due to a distribution of vortex blobs, J. Comp. Phys. 62 (1986), 111–23.

    Article  ADS  MATH  Google Scholar 

  4. C. Bardos, M. Bercovier, and O. Pironneau, The vortex method with finite elements, Math. Comp. 36 (1981), 119–36.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  5. J. T. Beale and A. Majda, Vortex methods, I: Convergence in three dimensions, Math. Comp. 39 (1982), 1–27.

    MathSciNet  ADS  MATH  Google Scholar 

  6. J. T. Beale and A. Majda, Vortex methods, II: Higher order accuracy in two and three dimensions, Math. Comp. 39 (1982), 29–52.

    MathSciNet  MATH  Google Scholar 

  7. J. T. Beale and A. Majda, High order accurate vortex methods with explicit velocity kernels, J. Comput. Phys. 58 (1985), 188–208.

    Article  ADS  MATH  Google Scholar 

  8. J. T. Beale and A. Majda, Vortex methods for fluid flow in two or three dimensions, Contemp. Math. 28 (1984), 221–229.

    MathSciNet  Google Scholar 

  9. J. T. Beale, A convergent 3-D vortex method with grid-free stretching, Math. Comp. 46 (1986), 401–24 and S15–S20.

    MathSciNet  ADS  MATH  Google Scholar 

  10. Benfatto and Pulvirenti, Convergence of Chorin-Marsden product formula in the half-plane, Commun. Math. Phys. 106 (1986), 427–58.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  11. C. Chiu and R. A. Nicolaides, Convergence of a higher order vortex method for the two and three dimensional incompressible Euler equations, preprint.

    Google Scholar 

  12. A. J. Chorin, Numerical study of slightly viscous flow, J. Fluid Mech. 57 (1973), 785–96.

    Article  MathSciNet  ADS  Google Scholar 

  13. A. J. Chorin and J. E. Marsden, A Mathematical Introduction to Fluid Mechanics, Springer-Verlag, New York, 1979.

    MATH  Google Scholar 

  14. A. J. Chorin, Vortex models and boundary layer instability, SIAM J. Sci. Statist. Comput 1 (1980), 1–21.

    Article  MathSciNet  MATH  Google Scholar 

  15. G. H. Cottet, Méthodes particulaires pour l’équation d’Euler dans le plan, These de 3e cycle, Université P. et M. Curie, Paris, 1982.

    Google Scholar 

  16. G. H. Cottet, Convergence of a vortex in cell method for the two dimensional Euler equations, to appear in Math. Comp.

    Google Scholar 

  17. G. H. Cottet, On the convergence of vortex methods in two and three dimensions, preprint, 1985.

    Google Scholar 

  18. G. H. Cottet and S. Mas-Gallic, A particle method to solve transport-diffusion equations, Part 1: the linear case, preprint, 1985.

    Google Scholar 

  19. R. Franke, Scattered data interpolation: tests of some methods, Math. Comp. 38 (1982), 181–200.

    MathSciNet  MATH  Google Scholar 

  20. A. F. Ghoniem and J. A. Sethian, Dynamics of turbulent structure in recirculating flow; a computational study, preprint, 1984.

    Google Scholar 

  21. A. F. Ghoniem and Y. Gagnon, Vortex simulation of laminar recirculating flow, preprint, 1985.

    Google Scholar 

  22. J. Goodman, Convergence of the random vortex method, preprint.

    Google Scholar 

  23. C. Greengard, Three-Dimensional Vortex Methods, Ph.D. thesis, Univ. of Calif., Berkeley, 1984.

    Google Scholar 

  24. C. Greengard, Convergence of the vortex filament method, Math. Comp. 47 (1986), 387–98.

    Article  MathSciNet  MATH  Google Scholar 

  25. L. Greengard and V. Rokhlin, A fast algorithm for particle simulations, preprint, 1986.

    Google Scholar 

  26. O. Hald and V. Del Prete, Convergence of vortex methods for Euler’s equations, Math. Comp. 32 (1978), 791–809.

    MathSciNet  ADS  MATH  Google Scholar 

  27. O. Hald, The convergence of vortex methods, II, SIAM J. Numer. Anal. 16 (1979), 726–55.

    Article  MathSciNet  MATH  Google Scholar 

  28. O. Hald, Convergence of vortex methods for Euler’s equations III, to appear in SIAM J. Numer. Anal.

    Google Scholar 

  29. O. Hald, Convergence of a random method with creation of vorticity, preprint, 1984.

    Google Scholar 

  30. R. Hockney and J. Eastwood, Computer Simulation Using Particles, McGraw-Hill, New York, 1981.

    Google Scholar 

  31. A. Leonard, Vortex methods for flow simulations, J. Comput. Phys. 37 (1980), 289–335.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  32. A. Leonard, Computing three-dimensional incompressible flows with vortex elements, Ann. Rev. of Fluid Mech. 17 (1985), 523–59.

    Article  ADS  Google Scholar 

  33. D.-G. Long, Convergence of the random vortex method in one and two dimensions, Ph.D. thesis, Univ. of Calif., Berkeley, 1986.

    Google Scholar 

  34. C. Marchioro and M. Pulvirenti, Hydrodynamics in two dimensions and vortex theory, Comm. Math. Phys. 84 (1982), 483–503.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  35. Y. Nakamura, A. Leonard, and P. Spalart, Vortex simulation of an inviscid shear layer, AIAA/ASME Third Joint Thermophysics, Fluids, Plasma and Heat Transfer Conference, 1982.

    Google Scholar 

  36. M. Perlman, On the accuracy of vortex methods, J. Comput. Phys. 59 (1985), 200–23.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  37. P. A. Raviart, An Analysis of particle methods, CIME Course, Como, Italy, 1983.

    Google Scholar 

  38. P. R. Spalart and A. Leonard, Computation of separated flows by a vortex-tracing algorithm, AIAA 14th Fluid and Plasma Dynamics Conference, 1981.

    Google Scholar 

  39. J. P. Choquin and B. Lucquin, Accuracy of the deterministic particle method for Navier-Stokes equations, preprint.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1988 Springer-Verlag New York Inc.

About this paper

Cite this paper

Beale, J.T. (1988). On the Accuracy of Vortex Methods at Large Times. In: Engquist, B., Majda, A., Luskin, M. (eds) Computational Fluid Dynamics and Reacting Gas Flows. The IMA Volumes in Mathematics and Its Applications, vol 12. Springer, New York, NY. https://doi.org/10.1007/978-1-4612-3882-9_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-3882-9_2

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4612-8388-1

  • Online ISBN: 978-1-4612-3882-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics