Skip to main content

Two-Frequency Rayleigh-Taylor and Richtmyer-Meshkov Instabilities

  • Conference paper
Computational Fluid Dynamics and Reacting Gas Flows

Part of the book series: The IMA Volumes in Mathematics and Its Applications ((IMA,volume 12))

  • 319 Accesses

Abstract

When a flat interface between an incompressible, inviscid fluid and vacuum is driven by a pressure gradient in the direction opposite to that of the density gradient, it is linearly unstable to any sinusoidal perturbation. The nonlinear evolution of a single frequency has been studied in the past using boundary integral methods. In practice, the interface is usually randomly perturbed, but this case presents great difficulty to numerical studies because the interface soon becomes severely distorted. However, it is possible to study the evolution of two modes long enough to gain some understanding of their interaction in the nonlinear regime. The behavior is different depending on whether the pressure gradient is externally imposed (Rayleigh-Taylor instability) or internally present (Richtmyer-Meshkov instability).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. G. Fraley, W. Gupta, D. Henderson, R. McCrory, R. Malone, R. Mason and R. Morse, in Proc Intern. Conf. on Plasma Physics and Controlled Nuclear Fusion Research. Tokyo, Japan, p. (1974).

    Google Scholar 

  2. D. H. Sharp, Physica 12D, p. 3, (1984).

    MathSciNet  ADS  Google Scholar 

  3. H. W. Emmons, C. T. Chang and B. C. Watson, J. Fluid Mech. 7, p.177, (1960).

    Article  ADS  MATH  Google Scholar 

  4. K. I. Read, Physica 12D, p. 45, (1984).

    ADS  Google Scholar 

  5. G. R. Baker, D. I. Meiron and S. A. Orszag, Phys. Fluids 23, p.1485, (1980).

    Article  ADS  MATH  Google Scholar 

  6. R. Menikoff and C. Zemach, J. Comp. Phys. 51, p.28, (1983).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  7. D. I. Pullin, J. Fluid Mech. 119, p.507, (1982).

    Article  ADS  MATH  Google Scholar 

  8. G. Dagan, J. Fluid Mech. 67, p.113, (1975).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  9. D. W. Moore and R. Griffith-Jones, Mathematika 21, p.128, (1974).

    Article  MATH  Google Scholar 

  10. D. W. Moore, private communication.

    Google Scholar 

  11. D. W. Moore, Proc. R. Soc. Lond. A365, p.105, (1979).

    ADS  Google Scholar 

  12. D. I. Meiron, G. R. Baker and S. A. Orszag, J. Fluid Mech. 114, p.283, (1982).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  13. R. Krasny, J. Fluid Mech. 167, p.65, (1986).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  14. R. Krasny, J. Comp. Phys. 65, p.292, (1986).

    Article  ADS  MATH  Google Scholar 

  15. G. Trygvason, submitted to J. Comp. Phys.

    Google Scholar 

  16. R. Kerr, Lawrence Livermore National Laboratory Report No. UCID-20915, (1986).

    Google Scholar 

  17. N. J. Zabusky, M. H. Hughes and K. V. Roberts, J. Comp. Phys. 30, p.96, (1979).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  18. D. W. Moore, Stud. Appl. Math. 58, p.119, (1978).

    ADS  Google Scholar 

  19. C. Pozrikidas and J. J. L. Higdon, J. Fluid Mech. 157, p.225, (1985).

    Article  ADS  Google Scholar 

  20. G. R. Baker and M. J. Shelley, J. Comp. Phys. 64, p.112, (1986).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  21. A. E. Overman and N. J. Zabusky, Phys. Fluids 25, p.1297, (1982).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  22. V. I. Yudovich, Zh. Vych. Mat. 3, p.1032, (1963).

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1988 Springer-Verlag New York Inc.

About this paper

Cite this paper

Baker, G.R. (1988). Two-Frequency Rayleigh-Taylor and Richtmyer-Meshkov Instabilities. In: Engquist, B., Majda, A., Luskin, M. (eds) Computational Fluid Dynamics and Reacting Gas Flows. The IMA Volumes in Mathematics and Its Applications, vol 12. Springer, New York, NY. https://doi.org/10.1007/978-1-4612-3882-9_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-3882-9_1

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4612-8388-1

  • Online ISBN: 978-1-4612-3882-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics