Advertisement

Positron-Emission Tomography

  • Joel S. Karp
  • Gerd Muehllehner

Abstract

The potential of positron imaging has been recognized for many years. In the mid-1970s two advances resulted in a dramatic increase in interest in this technique: (1) the development of positron-emission-computed tomographic devices [Phelps et al, 1975a; Hoffman, 1976a] and (2) the successful synthesis of [l8F]-fluorodeoxyglucose (18F-FDG) [Ido, 1978; Reivich, 1977] and its application to the study of brain metabolism.

Keywords

Random Coincidence Scatter Fraction Object Contrast Positron Imaging Barium Fluoride 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Allemand R, Gresset C, Vacher J: Potential advantages of a cesium fluoride scintillator for a time-of-flight positron camera. J Nucl Med 21: 153–155 (1980).Google Scholar
  2. Anger HO: Scintillation camera. Rev Sei Instrum 29–33: 27 (1958).CrossRefGoogle Scholar
  3. Atkins F: Monte Carlo analysis of photonscattering in radionuclide imaging. Doctoral thesis, Univ. of Chicago, Chicago, IL, 1978.Google Scholar
  4. Beck RN, Harper PV: Criteria for Evaluating Radioisotope Imaging Systems. Gottschalk A, Bek RN (eds). Springfield, IL, Charles C Thomas (1968) pp 348–382.Google Scholar
  5. Bergstrom M, Eriksson L, Bohm C, et al: Correction for scattered radiation in a ring detector positron camera by integral transformation of the projections. J Comput Assist Tomogr 7:42–50 (1983).CrossRefGoogle Scholar
  6. Bohm C, Eriksson L, Bergstrom M, et al: A computer assisted ringdetector positron camera system for reconstruction tomography of the brain. IEEE Trans Nucl Sei NS-25: 624–637 (1978).Google Scholar
  7. Brooks RA, Sank VJ, Talbert AJ: Sampling requirements and detector motion for positron emission tomography. IEEE Trans Nucl Sei NS-26: 2760–2763 (1979).CrossRefGoogle Scholar
  8. Brooks RA, Weiss GH, Talbert AJ: A new approach to interpolation in computed tomography. J Comput Assist Tomogr 2:577–585 (1978).CrossRefGoogle Scholar
  9. Brownell GL, Burnham CA, Wilensky S, et al: New developments in positron scintigraphy and the application of cyclotron-produced positron emitters, in: Medical Radioisotope Scintigraphy, vol 1, IAEA, Vienna (1969) p 466.Google Scholar
  10. Budinger TF, Derenzo SE, Gullberg GT, et al: Emission computer assisted tomography with single-photon J Comput Assist Tomogr 1:131–145 (1977).Google Scholar
  11. Burnham CA, Bradshaw J, Kaufman D, et al: A stationary positron emission ring tomograph using BGO detector and analog readout. IEEE Trans Nucl Sei NS-31: 632–636 (1984).CrossRefGoogle Scholar
  12. Burnham CA, Kaufman DE, Chesler DA, et al: Cylindrical PET detector design. IEEE Trans Nucl Sei NS-35 (1988) (in press).Google Scholar
  13. Cho ZH, Chan JK, Eriksson L, et al: Positron ranges obtained from biomedically important positron-emitting radionuclides. J Nucl Med 16: 1174–1176 (1975).Google Scholar
  14. Cho ZH, Farukhi MR: Bismuth germanate as a potential scintillation detector in positron camera. J Nucl Med 18: 840–844 (1977).Google Scholar
  15. Cho ZH, Hong KS, Ra JB, et al: A new sampling scheme for the ring positron camera: dichotomic ring sampling. IEEE Trans Nuel Sci NS-28: 94-98 (1981)Google Scholar
  16. Cho ZH, Lee HS, Hong KS: Wedge-shaped BGO scintillation crystal for positron emission tomography: Concise communication. J Nucl Med 25: 901–904 (1984).Google Scholar
  17. Cook WR, Finger M, Price TA: A thick Anger camera for gamma-ray astronomy. IEEE Trans Nucl Sei NS-32: 129–133 (1985).CrossRefGoogle Scholar
  18. De Benedetti S, Cowan CE, Konneker WR, et al: On the angular distribution of two-photon annihilation radiation. Phys Rev 77: 205–212 (1950).MATHCrossRefGoogle Scholar
  19. Derenzo SE: Precision measurement of annihilation point spread distributions for medically important positron emitters, in Proceedings of the Fifth International Conference on Positron Annihilation, Japan, (1979), pp 819–823.Google Scholar
  20. Derenzo SE: Method for optimizing shielding in positron-emission tomographs and for comparing detectors materials. J Nucl Med 21: 971–977 (1980).Google Scholar
  21. Derenzo SE: Initial characterization of a BGO-photodiode detector for high resolution positron emission tomography. IEEE Trans Nucl Sei NS-31: 620–626 (1984).CrossRefGoogle Scholar
  22. Derenzo SE, Budinger TF: Resolution limit for positron imaging devices. J Nucl Med 18:491 (1977).Google Scholar
  23. Derenzo SE, Budinger TF, Huesman RH: Imaging properties of a positron tomograph with 280 BGO crystals. IEEE Trans Nucl Sei NS-28: 81–89 (1981).CrossRefGoogle Scholar
  24. Derenzo SE, Budinger TF, Huesman RH: Detectors for high resolution dynamic positron emission tomography, in Greitz T, Ingvar DH, Widen L (eds): The Metabolism of the Human Brain Studied with Positron Emission Tomography. New York, Raven Press (1985) pp 21–31.Google Scholar
  25. Derenzo SE, Budinger TS, Vuletich T: High resolution positron-emission tomography using small bismuth germanate crystals and individual photo sensors. IEEE Trans Nucl Sei NS 30: 665–670 (1983).CrossRefGoogle Scholar
  26. Derenzo SE, Huesman RH, Cahson JL, et al: Initial results from the Donner 600 Crystal Positron Tomograph, IEEE Trans Nucl Sei NS-34: 321–325 (1987).CrossRefGoogle Scholar
  27. Eriksson L, Bohm C, Kesselberg M, et al: A high resolution positron camera, in Greitz T (ed): The Metabolism of the Human Brain Studied with Positron Emission Tomography. New York, Raven Press (1985) pp 33–46.Google Scholar
  28. Hoffman EJ, Huang S, Phelps ME, et al: Quantitation in positron emission computed tomography: 4. Effect of accidental coincidences. J Comput Assist Tomogr 5: 391–400 (1981b).CrossRefGoogle Scholar
  29. Hoffman EJ, Phelps ME: An analysis of some of the physical aspects of positron transaxial tomography. Comput Biol Med 6:345–360 (1976b).CrossRefGoogle Scholar
  30. Hoffman EJ, Phelps ME, Huang SC, et al: A new tomograph for quantitative positron emission computed tomography of the brain. IEEE Trans Nucl Sei NS-28: 99–103 (1981a).CrossRefGoogle Scholar
  31. Hoffman EJ, Phelps ME, Huang SC, et al: Dynamic gated and high resolution imaging with the ECAT 3. IEEE Trans Nucl Sei NS-33: 452–455 (1986).CrossRefGoogle Scholar
  32. Hoffman EJ, Phelps ME, Mullani NA, et al: Design and performance characteristics of a whole-body positron transaxial tomograph. J Nucl Med 17:493–502 (1976a).Google Scholar
  33. Hoffman EJ, van der Stee M, Ricci AR, et al: System design features that are determinate in precision and accuracy in positron emission tomography, in Greitz T, Ingvar DH, Widen L (eds): The Metabolism of the Human Brain Studied with Positron Emission Tomography. New York, Raven Press (1985) pp 69–83.Google Scholar
  34. Holmes TJ, Ficke DC: Analysis of positron-emission tomography scintillation-detectors with wedge faces and inter-crystal septa. IEEE Trans Nucl Sei NS-32: 826–830 (1985).CrossRefGoogle Scholar
  35. Holmes TJ, Snyder DL, Ficke DC: The effect of accidental coincidences in time-of-flight positron emission tomography. IEEE Trans Med Imaging MI-3: 68–79 (1984).CrossRefGoogle Scholar
  36. Huang SC, Hoffman EJ, Phelps ME, et al: Quantitation in positron emission computed tomography: 3. Effect of sampling. J Comput Assist Tomogr 4: 819–826 (1980).CrossRefGoogle Scholar
  37. Huesman RH: The effects of a finite number of projection angles and finite lateral sampling of projections on the propagation of statistical errors in transverse section reconstruction. Phys Med Biol 22: 511–521 (1977).CrossRefGoogle Scholar
  38. Ido T, Wan CN, Casella V: Labeled 2-deoxy-D-glucose analogs. F-18 labeled 2-deoxy-2-fluoro-D-glucose, 2-deoxy-2-fluoro-D-mannose and C-14 2-deoxy-12-fluoro-D-glucose. J Label Compds Radiopharm 24: 174–183 (1978).Google Scholar
  39. Jaszczak RJ, Coleman RE, Whitehead FR: Physical factors affecting quantitative measurements using camera-based single photon emission computed tomography (SPECT). IEEE Trans Nucl Sei NS-28: 69–80 (1981).CrossRefGoogle Scholar
  40. Karp JS, Daube-Witherspoon ME: Determination of depth-of-interaction in scintillation crystals using a temperature gradient. Nucl Inst and Meth A260: 509–517 (1987).Google Scholar
  41. Karp JS, Muehllehner G: Performance of a position-sensitive scintillation detector. Phys Med Biol 30: 643–655 (1985).CrossRefGoogle Scholar
  42. Karp JS, Muehllehner G, Beerbohm D, et al: Event localization in a continuous scintillation detector using digital processing. IEEE Trans Nucl Sei NS-33: 550–555 (1986).CrossRefGoogle Scholar
  43. Laval M, Moszynski M, Allemand R, Cormoreche E, Odru R, Vacher J: Barium fluoride: inorganic scintillator for subnanosecond timing. Nucl Instr Meth 206: 169–176 (1983).CrossRefGoogle Scholar
  44. Lim CB, Han KS, Hawman EG, et al: Image noise, resolution, and lesion de-tectability in single photon emission CT. IEEE Trans Nucl Sei NS-29: 500–505 (1982).CrossRefGoogle Scholar
  45. Llacer J, Graham LS: The effect of improving energy resolution on gamma camera performance: a quantitative analysis. IEEE Trans Nucl Sei NS-22: 309–320 (a1975).CrossRefGoogle Scholar
  46. Mankoff D, Muehllehner G: Performance of positron imaging systems as a function of energy threshold and shielding depth. IEEE Trans Med Imaging MI-3: 18–24 (1984).CrossRefGoogle Scholar
  47. Muehllehner G: Resolution limit of positron cameras. J Nucl Med 17: 757 (1976).Google Scholar
  48. Muehllehner G: Effect of resolution improvement on required count density in ECT imaging: a computer simulation. Phys Med Biol 30: 163–173 (1985).CrossRefGoogle Scholar
  49. Muehllehner G, Colsher, JG, Lewitt RM: A hexagonal bar positron camera: problems and solutions. IEEE Trans Nucl Sei NS-30: 652–660 (1983).CrossRefGoogle Scholar
  50. Muehllehner G, Karp JS: A positron camera using position-sensitive detectors: PENN-PET. J Nucl Med 27: 90–98 (1986).Google Scholar
  51. Muehllehner G, Karp JS, Mankoff DA, et al: Design and performance of a new positron tomograph. IEEE Trans Nucl Sei NS-35 (1988) (in press).Google Scholar
  52. Murayama H, Nohara N, Tanaka E, et al: A quad BGO detector and its timing and positioning discrimination for positron computed tomography. Nucl Instr Meth 192: 501–511 (1982).CrossRefGoogle Scholar
  53. Murayama H, Tanaka E, Nohara N, et al: Twin BGO detectors for high resolution positron emission tomography. Nucl Instr Meth 221: 633–640 (1984).CrossRefGoogle Scholar
  54. Nickles RJ, Meyer HO: Design of a three-dimensional positron camera for nuclear medicine. Phys Med Biol 23: 686–695 (1978).CrossRefGoogle Scholar
  55. Nohara N, Tanaka E, Tomitani T, et al: Positologica: a positron ECT device with a continuously rotating detector ring. IEEE Trans Nucl Sei NS-27: 1128–1136 (1980).CrossRefGoogle Scholar
  56. Nohara N, Tanaka E, Tomitani T, et al: Analytical study of performance of high-resolution positron emission computed tomographs for animal study. IEEE NS-32: 818–821 (1985).Google Scholar
  57. Nutt R, Casey M, Carroll LR: A new multi-crystal two dimensional detector block for PET. J Nucl Med 26: P28 (1985).Google Scholar
  58. Phelps ME, Hoffman EJ, Huang SC, et al: Effect of positron range on spatial resolution. J Nucl Med 16: 649–652 (1975b).Google Scholar
  59. Phelps ME, Hoffman EJ, Huang SC, et al: EC AT: a new computerized tomographic imaging system for positron-emitting radiopharmaceuticals. J Nucl Med 19: 635–647 (1978).Google Scholar
  60. Phelps ME, Hoffman EJ, Mullani NA, et al: Application of annihilation coincidence detection to transaxial reconstruction tomography. J Nucl Med 16: 210–224 (1975a).Google Scholar
  61. Phelps ME, Huang SC, Hoffman EJ, et al: An analysis of signal amplification using small detectors in positron emission tomography. J Comput Assist Tomogr 6: 551–565 (1982).CrossRefGoogle Scholar
  62. Reivich M, Kuhl D, Wolf A: Measurement of local cerebral glucose metabolism in man with F-18 2-fluoro-2-deoxy-D-glucose. Acta Neurol Scand 56 [suppl 64]: 192–193 (1977).Google Scholar
  63. Rogers JG, Saylor DP, Harrop R, et al: Design of an efficient position sensitive gamma ray detector for nuclear medicine. Phys Med Biol 31: 1061–1090 (1986).CrossRefGoogle Scholar
  64. Roney JM, Thompson CJ: Detector identification with four BGO crystals on a dual PMT. IEEE Trans Nucl Sei NS-31: 1022–1027 (1984).CrossRefGoogle Scholar
  65. Snyder DL, Cox JR: An overview of reconstructive tomography and limitations imposed by a finite number of projections, in Reconstruction Tomography in Diagnostic Radiology and Nuclear Medicine. Baltimore, MD, University Park Press. (1977) pp 3–32.Google Scholar
  66. Snyder DL, Thomas LJ, Ter-Pogossian MM: A mathematical model for positron-emission tomography systems having time-of-flight measurements. IEEE Trans Nucl Sei NS-28: 3575–3583 (1981).CrossRefGoogle Scholar
  67. Tanaka E, Nohara N, Tomitani T, et al: Analytical study of the performance of a multilayer positron computed tomography scanner. J Comput Assist Tomogr 6: 350–364 (1982).CrossRefGoogle Scholar
  68. Ter-Pogossian MM, Mullani NA, Hood J, et al: A multislice positron emission computed tomograph (PETT IV) yielding transverse and longitudinal images. Radiology 128: 477–484 (1978a).Google Scholar
  69. Ter-Pogossian MM, Mullani NA, Hood J, et al: Design considerations for a positron emission transverse tomograph (PETT V) for imaging of the brain. J Comput Assist Tomogr 2: 539–544 (1978b).CrossRefGoogle Scholar
  70. Tomitani T: Image reconstruction and noise evaluation in photon time-of-flight assisted positron emission tomography. IEEE Trans Nucl Sei NS-28: 4582–4589 (1981).Google Scholar
  71. Townsend D, Frey P, Jeavons A, et al: High Density Avalanche Chamber (HIDAC) Positron Camera. J Nucl Med 28: 1554–1562 (1987).Google Scholar
  72. Whitehead FR: Quantitative analysis of minimum detectable lesion-to-background uptake ratios for nuclear medicine imaging systems, in Medical Radionuclide Imaging. Vienna, IAEA (1977) pp 409–434.Google Scholar
  73. Wong WH: An analytical comparison between bismuth germanate and barium fluoride scintillators for non-time-of-flight positron emission tomography cameras. J Nucl Med 26: P100 (1985a).Google Scholar
  74. Wong WH: A new stratified detection system for positron emission tomography cameras. J Nucl Med 26: P28 (1985b).Google Scholar
  75. Wong WH, Mullani NA, Phillippe EA, et al: Image improvement and design optimization of the time-of-flight PET. J Nucl Med 24: 52–60 (1983).Google Scholar
  76. Yamashita T, Ito M, Hayashi T: New dual rectangular photomultiplier tube for positron CT. Proceedings of the International Workshop on Physics and Engineering in Medical Imaging. Asilomar, CA, March 15–18, 1982.Google Scholar

Copyright information

© Springer-Verlag New York Inc. 1988

Authors and Affiliations

  • Joel S. Karp
  • Gerd Muehllehner

There are no affiliations available

Personalised recommendations