Advertisement

Incommensurate Phase Transitions in Quartz and Berlinite

  • G. Dolino
Part of the Advances in Physical Geochemistry book series (PHYSICAL GEOCHE, volume 7)

Abstract

Silicon dioxide (SiO2) constitutes one of the most abundant minerals of the earth’s crust and is well known for its extensive polymorphism (see reviews by Frondel, 1962; Sosman, 1965). Under usual conditions, the stable phase is crystalline quartz; several other phases exist at high temperature and high pressure. The structures of these phases differ in the way the SiO4 tetrahedra are connected, the SiO4 tetrahedra being the building blocks of all SiO2 polymorphs except stishovite. The transformation from one of these phases to another is known as a reconstructive transformation, as it produces large changes in the topology of the structure. The low-pressure phases (quartz, cristobalite, tridymite) display another kind of transition that produces only small changes of atomic positions, without breaking any atomic bonds. Quartz at 846 K shows such a transition from the low-temperature α phase to the high-temperature β phase. Since its discovery by Le Chatelier (1889), this transition has been the subject of so many investigations that one would expect its properties to be well known. It is, therefore, quite surprising to find that some uncertainties remain even about basic properties such as the thermodynamic equation of state (Richet et al. 1982; Hosieni et al. 1985). Moreover, qualitative features, such as the existence of discontinuities at the transition, have long been controversial. These uncertainties are surprising because good-quality quartz samples (either natural or synthetic) are easily available and give reproducible results. It appears that the problems concerning the α-β transition result from the poor accuracy of the temperature control of most of the previous experiments.

Keywords

Soft Mode Thermal Hysteresis Landau Theory Inelastic Neutron Scattering Incommensurate Phase 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Arnold, H. (1965) Diffuse Röntgenbeugung und Kooperation bei der a-ß Unwandlung von Quartz. Z. Kristallogr. 121, 145–157.CrossRefGoogle Scholar
  2. Arnold, M., Bethke, J., Eckold, G., Hahn, Th., and Min Hua, J. (1984) A neutron scattering study of the incommensurate phase in A1PO4 near the a-ß transition. Acta Crystallogr. Sect. A 40(Suppl.), C-134.Google Scholar
  3. Aslanyan, T.A., and Levanyuk, A.P. (1979) On the possibility of the incommensurate phase near a-ß transition point in quartz. Solid State Commun. 31, 547–550.CrossRefGoogle Scholar
  4. Aslanyan, T.A., Levanyuk, A.P., Vallade, M., and Lajzerowicz, J. (1983) Various possibilities for the formation of incommensurate superstructure near the a-ß transition in quartz. J. Phys. 16, 6705–6712.Google Scholar
  5. Axe, J.P., and Shirane, G. (1970) Study of the a-ß quartz phase transformation by inelastic neutron scattering. Phys. Rev. B 1, 342–348.CrossRefGoogle Scholar
  6. Bachheimer, J.P. (1980) An anomaly in the ß phase near the a-1 transition of quartz. J. Phys. Lett. 41L, 559–561.CrossRefGoogle Scholar
  7. Bachheimer, J.P., and Dolino, G. (1975) Measurement of the order parameter of a-quartz by second harmonic generation of light. Phys. Rev. B 11, 3195–3205.CrossRefGoogle Scholar
  8. Bachheimer, J.P., Berge, B., Dolino, G., Saint Grégoire, P., and Zeyen, C. (1984) Calorimetric and neutron scattering studies of the incommensurate phase of berlinite (A1PO4). Solid State Commun. 51, 55–58.CrossRefGoogle Scholar
  9. Banda, E.J., Craven, R.A., Parks, R.D., Horn, P.M., and Blume, M. (1975) a-ß transition in quartz: Classical versus critical behaviour. Solid State Commun. 17, 11–14.Google Scholar
  10. Bastie, P., and Dolino, G. (1985) y-ray diffraction study of an incommensurate phase: Application to quartz. Phys. Rev. B 31, 2857–2861.Google Scholar
  11. Berge, B., Dolino, G., Vallade, M., Boissier, M., and Vacher, R.J. (1984) Incommensurate phase of quartz II: Brillouin scattering studies. J. Phys. 45, 715–724.CrossRefGoogle Scholar
  12. Berge, B., Bachheimer, J.P., Dolino, E., Vallade, M., and Zeyen C. (1986) Inelastic neutron scattering study of quartz near the incommensurate phase transition. Ferroelectrics 66, 73–84.CrossRefGoogle Scholar
  13. Berge, B., Dolino, G., Vallade M., and Moussa, F. (1988) Inelastic neutron scattering study of the origin of the incommensurate phase of quartz (in preparation).Google Scholar
  14. Bethke, J., Dolino, G., Eckold, G., Berge, B., Vallade, M., Zeyen, C., Hahn, T., Arnold, H., and Moussa, F. (1987) Phonon dispersion and mode coupling in high-quartz near the incommensurate phase transition. Europhys. Lett. 3, 207–212.CrossRefGoogle Scholar
  15. Blinc, R., and Levanyuk, A.P. (eds.) (1986) Incommensurate Phase in Dielectrics. North Holland, Amsterdam.Google Scholar
  16. Crane, G.R., and Bergman, J.G. (1976) Structural mechanics from nonlinear optics—the a-ß phase transition in quartz. J. Appl. Crystallogr. 9, 476–480.CrossRefGoogle Scholar
  17. Cohen, L.H., Klement, W., Jr., and Adams, H.G. (1974) Yet more observations on the high-low quartz inversion: Thermal analysis structures to 7 kbar with single crystal s. Am. Mineral. 59, 1099–1104.Google Scholar
  18. Detaint, J., Zarka, A., Capelle, B., Toudic, Y., Schwartzel, J., Philippot, E., Jumas, J.C., Goiffon, A., and Doukhan, J.C. (1986) Berlinite: Characterization of crystals with a low water concentration and design of bulk wave resonators, in 40th Frequency Control Symposium, pp. 101–114.Google Scholar
  19. Dolino, G. (1979) Elastic light scattering and birefringence measurements in the coexistence state of a and ß quartz. J. Phys. Chem. Solids 40, 121–128.CrossRefGoogle Scholar
  20. Dolino, G. (1985) Incommensurate phase of quartz. Jpn. J. Appl. Phys. Suppl. 24–2, 153–156.Google Scholar
  21. Dolino, G. (1986) Incommensurate phase of quartz, in Incommensurate Phase in Dielectrics, edited by R. Blinc and A.P. Levanyuk, pp. 205–232. North Holland, Amsterdam.Google Scholar
  22. Dolino, G., and Bachheimer, J.P. (1982) Effect of the a-ß transition on mechanical properties of quartz. Ferroelectrics 43, 77–86.CrossRefGoogle Scholar
  23. Dolino, G., and Bachheimer, J.P. (1984) Thermodynamical behaviour of quartz around the transitions between a, incommensurate and ß phases, in Phase Transformation in Solids, edited by Th. Tsakalakos, Materials Research Society Symposia, vol. 21, pp. 803–809.Google Scholar
  24. Dolino, G., Bachheimer, J.P., and Vallade, M. (1973) Direct observation of Dauphiné twins in quartz with second harmonic light. Appl. Phys. Lett. 22, 623–625.CrossRefGoogle Scholar
  25. Dolino, G., Bachheimer, J.P., and Zeyen, C.M.E. (1982) Observation by neutron scattering of a modulated structure in quartz above the a-ß phase transition, in Europhysics Conference Abstracts 6A, p. 257 (see also ILL Reports, 1982, p. 121 ).Google Scholar
  26. Dolino, G., Bachheimer, J.P., Gervais, F., and Wright, A.F. (1983a) La transition a-ß du quartz: Le point sur quelques problèmes actuels, transition ordre-désordre ou displacive, comportement thermodynamique. Bull. Mineral. 106, 267–285.Google Scholar
  27. Dolino, G., Bachheimer, J.P., and Zeyen, C.M.E. (1983b) Observation of an intermediate phase near the a-ß transition of quartz by heat capacity and neutron scattering measurements. Solid State Commun. 45, 295–299.CrossRefGoogle Scholar
  28. Dolino, G., Bachheimer, J.P., Berge, B., and Zeyen, C.M.E. (1984a) Incommensurate phase of quartz I: Elastic neutron scattering. J. Phys. 45, 361–371.CrossRefGoogle Scholar
  29. Dolino, G., Bachheimer, J.P., Berge, B., Zeyen, C.M.E., Van Tendeloo, G., Van Landuyt, J. and Amelinckx, S. (1984b) Incommensurate phase of quartz III: Study of the coexistence state between the incommensurate and the a phase by neutron scattering and electron microscopy. J. Phys. 45, 901–912.CrossRefGoogle Scholar
  30. Dolino, G., Bastie, P., Berge, B., Vallade, M., Bethke, J., Regnault, L.P., and Zeyen, C.M.E. (1987) Stress induced 3q-lq incommensurate phase transition in quartz. Europhys. Leu. 3, 601–609.CrossRefGoogle Scholar
  31. Dolino, G., Mogeon, F., and Bastie, P. (1988) Birefringence and y-ray study of the irreversible behavior of the incommensurate phase of quartz. Physica Status Solidi (submitted).Google Scholar
  32. Ecolivet, C., and Poignant, H. (1981) Berlinite and quartz phase transition analogy as seen by Brillouin scattering. Phys. Status Solidi A 63K, 107–109.CrossRefGoogle Scholar
  33. Frondel, C. (1962) The System of Mineralogy of J.D. Dana and E.S. Dana, 7th ed. vol. III, Silica Minerals, p. 334. Wiley, New York.Google Scholar
  34. Ghazi, F. (1985) Contribution à l’étude des transitions de phases du quartz par mesure de dilatation et de biréfringence, p. 107. Thèse de Sème cycle, Université de Grenoble.Google Scholar
  35. Ghiorso, M.S., Carmichael, S.S.E., and Moret, L.K. (1979) Inverted high temperature quartz: Unit cell parameters and properties of the a-ß inversion, Contrib. Mineral. Petrol. 68, 307–323.CrossRefGoogle Scholar
  36. Ginzburg, V.L., and Levanyuk, A.P. (1958) Light scattering near second order phase transition and Curie point. J. Phys. Chem. Solids 6, 51–58.CrossRefGoogle Scholar
  37. Gouhara, K., and Kato, N. (1984) Refined observations of satellite reflections in the intermediate phase of quartz. J. Phys. Soc. Jpn. 53, 2177–2180.CrossRefGoogle Scholar
  38. Gouhara, K., and Kato, N. (1985) X-ray intensity measurement of satellites in quartz intermediate phase. Jpn. J. Appl. Phys. Suppl. 24, 805–807.Google Scholar
  39. Grimm, H., and Dourer, B. (1975) On the mechanism of the a-ß phase transformation of quartz. J. Phys. Chem. Solids 36, 407–413.CrossRefGoogle Scholar
  40. Heine, V., and McConnell, J.D.C. (1981) Origin of modulated incommensurate phases in insulators. Phys Rev. Lett. 46, 1092–1095.CrossRefGoogle Scholar
  41. Hosieni, K.R., Howald, R.A., and Scanlon, M.W. (1985) Thermodynamics of the lambda transition and the equation of state of quartz. Am. Mineral. 70, 782–793.Google Scholar
  42. Inoue, N., Iida, A., and Korha, K. (1974) X-ray topographic investigation on phase transition in quartz: Experimental observations. J. Phys. Soc. Jpn. 37, 742–750.CrossRefGoogle Scholar
  43. Jamet, J.P., and Lederer, P.J. (1983) Observation of a new memory effect in modulated structure. J. Phys. Lett. 44L, 257–264.CrossRefGoogle Scholar
  44. Keith, M.L., and Tuttle, O.F. (1952) Significance of variation in the high-low inversion of quartz. Am. J. of Science, Bowen Volume, 203–253.Google Scholar
  45. Kosten, K., and Arnold H. (1980) Die III-V Analoga des SiO2. Z. Kristallogr. 152, 119–133.CrossRefGoogle Scholar
  46. Landau, L., and Lifshitz, E. (1976) Statistical Physics. Pergamon, London.Google Scholar
  47. Le Chatelier, H. (1889) Sur la dilatation du quartz. C.R. Acad. Sci. Paris 108, 1046–1059.Google Scholar
  48. Levanyuk, A.P., and Sannikov, D.G. (1976a) Theory of phase transitions in ferroelectrics accompanied by the formation of a superstructure whose period is not equal to a multiple of the initial period. Soy. Phys. Solid State 18, 245–248.Google Scholar
  49. Levanyuk, A.P., and Sannikov, D.G. (1976b) Thermodynamic theory of phase transitions accompanied by the formation of noncommensurate superstructure in NaNO2 and SC(NH2)2 ferroelectrics. Soy. Phys. Solid State 18, 1122–1125.Google Scholar
  50. Mayer, G. (1960) Recherches expérimentales sur une transformation du quartz, Rapport C.E.A. No. 1330.Google Scholar
  51. Matsuura, M., Yao, H., Gouhara, K., Hatta, I., and Kato, N. (1985) Heat capacity in a-ß transition of quartz, J. Phys. Soc. Jpn. 53, 625–629.CrossRefGoogle Scholar
  52. McConnell, J.D.C. (1978) The intermediate plagioclase feldspars: An example of a structural resonance. Z. Kristallogr. 147, 45–62.CrossRefGoogle Scholar
  53. Raman, C.V., and Nedungadi, T.M.K. (1940) The a-ß transformation of quartz. Nature (London) 145, 147.CrossRefGoogle Scholar
  54. Richet, P., Bottinga, Y., Denielou, L., Petitet, J.P., and Tequi, C. (1982) Thermodynamic properties of quartz, cristobalite and amorphous SiO2: Drop calorimetry measurements between 1000 and 1800 and a review from 0 to 2000K. Geochim. Cosmochim. Acta 46, 2639–2658.CrossRefGoogle Scholar
  55. Saint Grégoire, P., Shafer, F.J., Kleeman, W., Durand, J., and Goiffon, A. (1984) Birefringence study of the a-(3 transformation of berlinite A1PO4. J. Phys. C 17, 1375–1383.CrossRefGoogle Scholar
  56. Scott, J.F. (1974) Soft mode spectroscopy: Experimental studies of structural phase transitions. Rev. Mod. Phys. 46, 83–128.CrossRefGoogle Scholar
  57. Shapiro, S.M., O’Shea, D.C., and Cummins, H. Z. (1967) Raman scattering study of the a-ß phase transition in quartz. Phys. Rev. Lett. 19, 361–364.CrossRefGoogle Scholar
  58. Smykatz-Kloss, W. (1970) Die Hoch-tiefquartz inversion als petrologisches Hilfsmittel. Contrib. Mineral. Petrol. 26, 20–41.CrossRefGoogle Scholar
  59. Smolenskii, G.A. (1984) Ferroelectrics and Related Materials. Gordon & Breach, New York.Google Scholar
  60. Snoeck, E., Roucau, C., and Saint Grégoire, P. (1986) Electron microscopy study of the modulated phases in berlinite and quartz. J. Phys. 47, 2041–2053.CrossRefGoogle Scholar
  61. Sosman, R.B. (1965) The Phases of Silica. Rutgers University Press, New Brunswick, New Jersey, 338 pp.Google Scholar
  62. Vallade, M., Dvorak, V., and Lajzerowicz, J. (1987) Amplitudons and phasons in triple-k incommensurate phase of quartz type crystals. J. Phys. 48, 1171.CrossRefGoogle Scholar
  63. Van Landuyt, J., Van Tendeloo, G., Amelinkx, S., and Walker, M.B. (1985) Interpretation of Dauphiné twin domain configurations resulting from the a-ß phase transition in quartz and aluminum phosphate. Phys. Rev. B 31, 2986–2992.CrossRefGoogle Scholar
  64. Van Tendeloo, G., Van Landuyt, J., and Amelinckx, S. (1976) The phase transition in quartz and A1PO4 as studied by electron microscopy and diffraction. Phys. Status Solidi A 33, 723–735.CrossRefGoogle Scholar
  65. Wright, A.F., and Lehmann, M.S. (1981) The structure of quartz at 25 and 590°C determined by neutron diffraction. J. Solid State Chem. 36, 371–380.CrossRefGoogle Scholar
  66. Yakolev, I.A., and Shustin, O.A. (1983) Light scattering in quartz and ammonium chloride in the vicinity of phase transition: A retrospective view and recent results, in Light Scattering near Phase Transitions, edited by H.Z. Cummins and A.P. Levanyuk. North Holland, Amsterdam.Google Scholar
  67. Young, R.A. (1962) Mechanism of the Phase Transition in Quartz. Office of Scientific Research Rept. No. 2569.Google Scholar
  68. Zarka, A., Capelle, B., and Jumas, J.C. (1986) Mise en évidence expérimentale de la phase incommensurable de la berlinite par diffraction aux rayons X. C.R. Acad. Sci. Paris 302, 523–526.Google Scholar
  69. Zarka, A., Capelle, B., Petit, M., Dolino, G., Bastie, P. and Berge, B. (1988) Evidence of a single q incommensurate phase in quartz by synchrotron X-ray diffraction, J. Appl. Cryst. 21, 72–73.CrossRefGoogle Scholar
  70. Zubov, V.G. (1956) A simple method of observing a phase transition in quartz single crystals. Soy. Phys. Crystallogr. 1, 188–190.Google Scholar

Copyright information

© Springer-Verlag New York Inc. 1988

Authors and Affiliations

  • G. Dolino

There are no affiliations available

Personalised recommendations