Skip to main content

Abstract

Herbicides are commonly used as preplant or preemergence and post-emergence for controlling several weeds in most major agricultural crops throughout the World (Worthing and Walker 1983). When utilized in agriculture they are likely to enter into various compartments of the environment. They may undergo leaching by water, volatilization into the atmosphere, sorption to various surfaces, and partitioning into organic films. Their environmental behavior in each of these compartments is of prime importance in the successful prediction of their fate. The environmental picture becomes even more complex by taking into account the varying conditions existing within each compartment. Moilanen et al. (1979) listed several of the most important variables encountered within each environmental compartment (Table 1).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Acher AJ (1982) The fate of organic pollutants in frozen waters: Sunlight photodecomposition of uracil herbicides in frozen aqueous solutions. Water Res 16:405–410.

    Article  CAS  Google Scholar 

  • Acher AJ, Dunkelblum E (1979) Identification of sensitized photooxidation products of bromacil in water. J Agric Food Chem 27:1164–1167.

    Article  CAS  Google Scholar 

  • Acher AJ, Rosenthal I (1977) Dye-sensitized-photo-oxidation—A new approach to the treatment of organic matter in sewage effluents. Water Res 11:557–562.

    Article  CAS  Google Scholar 

  • Acher AJ, Saltzman S (1980) Dye-sensitized photooxidation of bromacil in water. J Environ Qual 9:190–194.

    Article  CAS  Google Scholar 

  • Acher AJ, Saltzman S, Brates N, Dunkelblum E (1981) Photosensitized decomposition of terbacil in aqueous solutions. J Agric Food Chem 29:707–711.

    Article  CAS  Google Scholar 

  • Akhavien AA, Linscott DL (1968) The dipyridylium herbicides, paraquat and diquat. Residue Reviews 23:97–145.

    Google Scholar 

  • Avila V, Gsponer HE, Previtali CM (1980) Photochemistry of p-chlorobutyroanilide. Rev Latinoamer Quirn 11:145–147.

    CAS  Google Scholar 

  • Barbeni M, Pramuaura E, Pelizzetti E (1985) Photodegradation of pentachlorophenol catalyzed by semiconductor particles. Chemosphere 14:195–208.

    Article  CAS  Google Scholar 

  • Burkhard N, Guth JA (1976) Photodegradation of atrazine, atraton and ametryne in aqueous solution with acetone as a sensitizer. Pestic Sci 7:65–71.

    Article  CAS  Google Scholar 

  • Boule P, Guyon C, Lemaire J (1982) Photochemistry and environment. IV. Photochemical behavior of monochlorophenols in dilute aqueous solution. Chemosphere 11:1179–1188.

    Article  CAS  Google Scholar 

  • Boule P, Guyon C, and Lemaire J (1984) Photochemistry and environment. VI. Direct phototransformation of chlorophenols and interaction with phenol on UV exposure in aqueous solution. Toxicol Environ Chem 7:97–110.

    Article  CAS  Google Scholar 

  • Calvert JG, Pitts JN (1966) Photochemistry. Wiley, New York, pp 1–830.

    Google Scholar 

  • Chen Y-L, Chen C-C (1978) Photodecomposition of a herbicide, butachlor. Nippon Noyaku Gakkaishi 3:143–148.

    CAS  Google Scholar 

  • Choudhry GG (1984a) Humic Sustances: Structural, Photophysical, Photochemical and Free Radical Aspects and Interactions with Environmental Chemicals. Gordon and Breach Sci Publ, New York, pp 158–159.

    Google Scholar 

  • Choudhry GG (1984b) Humic Substances: Structural Aspects and Photophysical, Photochemical and Free Radical Characteristics. In: Hutzinger O (ed) The Handbook of Environmental Chemistry, Vol. 1, Part C., Springer-Verlag, Berlin, pp 1–24.

    Google Scholar 

  • Choudhry GG (1984c) Photophysical and photochemical properties of soil and aquatic humic materials. Residue Reviews 92:59–112.

    CAS  Google Scholar 

  • Choudhry GG, Hutzinger O (1982) Photochemical formation and degradation of polychlorinated dibenzofurans and dibenzo-p-dioxins. Residue Reviews 84:113–161.

    CAS  Google Scholar 

  • Choudhry GG, Hutzinger O (1983) Mechanistic Aspects of the Thermal Formation of Halogenated Organic Compounds Including Polychlorinated Dibenzo-p-dioxins. Gordon and Breach Sci Publ, New York, pp 6–7.

    Google Scholar 

  • Choudhry GG, Webster GRB (1985a) Protocol guidelines for the investigations of photochemical fate of pesticides in water, air, and soils. Residue Reviews 96:79–136.

    CAS  Google Scholar 

  • Choudhry GG, Webster GRB (1985b) Environmental photochemistry of PCDDs. I. Kinetics and quantum yields of the photodegradation of 1,2,3,4,7-penta-and l,2,3,4,7,8-hexachlorodibenzo-p-dioxin in aqueous acetonitrile. Chemosphere 14:9–26.

    Article  CAS  Google Scholar 

  • Choudhry GG, van den Broeck JA, Hutzinger O (1983) Formation of polychlorodibenzofurans (PCDFs) by the photolysis of polychlorobenzenes (PCBZs) in aqueous acetonitrile containing phenols. Chemosphere 12:487–492.

    Article  CAS  Google Scholar 

  • Choudhry GG, Roof AAM, Hutzinger O (1979) Mechanisms in sensitized photochemistry of environmental chemicals. Toxicol Environ Chem 2:259–302.

    Article  CAS  Google Scholar 

  • Choudhry GG, van den Broeck JA, Webster GRB, Hutzinger O (1986) Photochemistry of halogenated benzene derivatives. VII. Photoincorporations of polychlorobenzenes with humic model monomers in aqueous acetonitrile solutions. Environ Toxicol Chem 5:625–635.

    Article  CAS  Google Scholar 

  • Choudhry GG, van den Broeck JA, Webster GRB, Hutzinger O (1987b) Environmental photoincorporations of polychlorobenzenes into several humic model monomers. Chemosphere, 16:495–505.

    Article  CAS  Google Scholar 

  • Choudhry GG, Graham NJ, Webster GRB (1987b) Can J Chem, 65:2223–2233.

    Article  CAS  Google Scholar 

  • Choudhry GG, van der Wielen FWM, Webster GRB, Hutzinger O (1985) Photochemistry of halogenated benzene derivatives. VI. Photodegradation of tetra- and pentachlorophenols in aqueous acetonitrile. Can J Chem 63:469–475.

    Article  CAS  Google Scholar 

  • Choudhry GG, Sundstrom G, Ruzo LO, Hutzinger O (1977a) Photochemistry of chlorinated diphenyl ethers. J Agric Food Chem 25:1371–1376.

    Article  CAS  Google Scholar 

  • Choudhry GG, Sundstrom G, van der Wielen FWM, Hutzinger O (1977b) Synthesis of dibenzofurans by photolysis of chlorinated diphenyl ethers in acetone solution. Chemosphere 6:327–331.

    Article  CAS  Google Scholar 

  • Crosby DG (1976) Herbicide photodecomposition. In: Kearney PC and Kaufman DD (eds) Herbicides: Chemistry, Degradation and Mode of Action. Vol. 2, Second Edition. Marcel Dekker, New York, pp 835–890.

    Google Scholar 

  • Crosby DG (1969) Experimental approaches to pesticide photodecomposition. Residue Reviews 25:1–12.

    PubMed  CAS  Google Scholar 

  • Crosby DG, Hamadmad N (1971) The photoreduction of pentachlorobenzenes. J Agric Food Chem 19:1171–1174.

    Article  PubMed  CAS  Google Scholar 

  • Crosby DG, Wong AS (1973) Photodecomposition of 2,4,5-trichlorophenoxyacetic acid (2,4,5-T) in water. J Agric Food Chem 21:1052–1054.

    Article  PubMed  CAS  Google Scholar 

  • DeMarco AC, Hayes ER (1979) Photodegradation of thiolcarbamate herbicides. Chemosphere 8:321–326.

    Article  CAS  Google Scholar 

  • Draper WM, Casida JE (1983) Diphenyl ether herbicides: Mutagenic metabolites and photoproducts of nitrofen. J Agric Food Chem 31:227–231.

    Article  PubMed  CAS  Google Scholar 

  • Draper WM, Crosby DG (1981) Hydrogen peroxide and hydroxyl radical: Intermediates in indirect photolysis reactions in water. J. Agric Food Chem 29:699–702.

    Article  CAS  Google Scholar 

  • Draper WM, Crosby DG (1983) The photochemical generation of hydrogen perioxide in natural waters. Arch Environ Contam Toxicol 12:121–126.

    Article  CAS  Google Scholar 

  • Draper WM, Crosby DG (1984a) Solar photooxidation of pesticides in dilute hydrogen peroxide. J Agric Food Chem 32:231–237.

    Article  CAS  Google Scholar 

  • Draper WM, Crosby DG (1984b) Photochemistry and volatility of drepamon in water. J Agric Food Chem 32:728–733.

    Article  CAS  Google Scholar 

  • Dulin D, Mill, T (1982) Development and evaluation of sunlight actinometers. Environ Sci Technol 16:815–820.

    Article  CAS  Google Scholar 

  • Eastin EF (1972) Photolysis of fluorodifen. Weed Res 12:75–79.

    Article  CAS  Google Scholar 

  • Fang C-H (1977) Studies on the photodecomposition of herbicide alachlor. Chung-Kuo Nung Yeh Hua Hsueh Hiu Chih 15:14–22.

    CAS  Google Scholar 

  • Gear JR, Michel JG, Grover R (1982) Photochemical degradation of picloram. Pestic Sci 13:189–194.

    Article  CAS  Google Scholar 

  • Golab T, Althaus WA, Wooten HL (1979) Fate of 14C-trifluralin in soil. J Agric Food Chem 27:163–179.

    Article  CAS  Google Scholar 

  • Guyon C, Boule P, Lemaire J (1982) Photochemistry and environment. III. Formation of a cyclopentadienic acid by irradiation of 2-chlorophenol in aqueous basic solution. Tetrahedron Lett 23:1581–1584.

    Article  CAS  Google Scholar 

  • Guzik FF (1978) Photolysis of isopropyl 3-chlorocarbanilate in water. J Agric Food Chem 26:53–55.

    Article  CAS  Google Scholar 

  • Hayase Y, Takahashi T (1983) Acetone-sensitized photolysis of the herbicide 3-(5-tert-butyl-3-isoxazoly)-1,1-dimethylurea (isouron). Nippon Noyaku Gakkaishi 8:513–517.

    CAS  Google Scholar 

  • Hee SSQ, Sutherland RG (1979) Vapor and liquid phase photolysis of the n-butyl ester of 2,4-dichlorophenoxyacetic acid. Arch Environ Contam Toxicol 8:247–254.

    Article  CAS  Google Scholar 

  • Hee SSQ, Paine SH, Sutherland RG (1979) Photodecomposition of a formulated mixed butyl ester of 2,4-dichlorophenoxyacetic acid in aqueous and hexane solutions. J Agric Food Chem 27:79–82.

    Article  CAS  Google Scholar 

  • Hiatt CW, Hoskins WT, Olivier L (1960) The action of sunlight on sodium pentachlorophenate. Am J Trop Med Hygiene 9:527–531.

    CAS  Google Scholar 

  • Ishikawa K, Nakamura Y, Niki Y, Kuwatsuka S (1977) Metabolism of benthiocarb. V. Photodegradation of benthiocarb herbicide. Nippon Noyaku Gakkaishi 2:17–25.

    CAS  Google Scholar 

  • Ivie GW, Casida JE (1970) Enhancement of photoalteration of cyclodiene insecticide chemical residues by rotenone. Science 167:1620–1622.

    Article  PubMed  CAS  Google Scholar 

  • Ivie GW, Casida JE (1971a) Sensitized photodecomposition and photosensitizer activity of pesticide chemicals exposed to sunlight on ilica gel chromatoplates. J Agric Food Chem 19:405–409.

    Article  CAS  Google Scholar 

  • Ivie, GW, Casida JE (1971b) Photosensitizers for the accelerated degradation of chlorinated cyclodienes and other insecticide chemicals exposed to sunlight on beam leaves. J Agric Food Chem 19:410–416.

    Article  CAS  Google Scholar 

  • Jordan LS, Mann JD, Day BE (1965) Effects of ultraviolet light on herbicides. Weeds 13:43–46.

    Article  CAS  Google Scholar 

  • Kearney PC, Kaufman DD (eds) (1976) Herbicides: Chemistry, Degradation, and Mode of Action. Vol. 2, Second Ed. Marcel Dekker, New York, pp 501–934.

    Google Scholar 

  • Kearney PC, Kaufman DD (eds) (1975) Herbicides: Chemistry, Degradation, and Mode of Action. Vol. 1, Second Ed. Marcel Dekker, New York, pp 1–500.

    Google Scholar 

  • Kearney PC, Helling CS (1969) Reactions of Pesticides in Soils. Residue Reviews 25:25–44.

    PubMed  CAS  Google Scholar 

  • Kearney PC, Woolson EA, Plimmer JR, Isensee AR (1969) Decontamination of pesticides in soils. Residue Reviews 29:137–149.

    PubMed  CAS  Google Scholar 

  • Khan, SU, Akhtar MH (1983) Photodecomposition of chlorothalonil in benzene. Pestic Sci 14:354–358.

    Article  CAS  Google Scholar 

  • Khan, SU, Gamble DS (1983) Ultraviolet irradiation of an aqueous solution of prometryne in the presence of humic materials. J Agric Food Chem 31:1099–1104.

    Article  CAS  Google Scholar 

  • Khan SU, Schnitzer M (1978) UV irradiation of atrazine in aqueous fulvic acid solution. J Environ Sci Health B13(3): 299–310.

    CAS  Google Scholar 

  • Klehr M, Iwan J, Riemann J (1983) An experimental approach to the photolysis of pesticides adsorbed on soil: Thidiazuron. Pestic Sci 14:359–366.

    Article  CAS  Google Scholar 

  • Kotzias D, Korte F (1981) Photochemistry of phenylurea herbicides and their reactions in the environment. Ecotoxicol Environ Saf 5:503–512.

    Article  PubMed  CAS  Google Scholar 

  • Kuwahara M, Kato N, Munakata K (1966a) The photochemical reaction of pentachlorophenol. Part I. The structure of the yellow compound. Agric Biol Chem (Tokyo) 30:232–238.

    Article  CAS  Google Scholar 

  • Kuwahara M, Kato N, Munakata K (1966b) The photochemical reaction of pentachlorophenol. Part II. The chemical structure of minor products. Agric Biol Chem (Tokyo) 30:239–244.

    Article  CAS  Google Scholar 

  • Kuwahara M, Shindo N, Kato N, Munakata K (1969) The photochemical reaction of pentachlorophenol. Part III. The chemical structure of a yellow C18-compound. Agric Biol Chem (Tokyo) 33:892–899.

    Article  CAS  Google Scholar 

  • Lamparski LL, Stehl RH, Johnson RL (1980) Photolysis of pentachlorophenol treated wood. Chlorinated dibenzo-p-dioxin formation. Environ Sci Technol 14:196–200.

    Article  CAS  Google Scholar 

  • Lemaire J, Boule P, Guyon C, Tissot A (1985a) Specific photo transformation of xenobiotic compounds (halogenophenols and chlorobenzenes). ACS 189th Nat. Meet., Miami, FL, April 29–May 3, 1985, Extended Abstr., Vol. 25, No. 1, pp 328–331.

    Google Scholar 

  • Lemaire J, Campbell I, Hulpke H, Guth JA, Merz W, Philp J, von Waldow C (1982) An assessment of test methods for photodegradation of chemicals in the environment. Chemosphere 11:119–164.

    Article  CAS  Google Scholar 

  • Lemaire J, Guth JA, Klais O, Leahey J, Merz W, Philp J, Wilmes R, Wolf CJM, (1985b) Ring test of a method for assessing the phototransformation of chemicals in water. Chemosphere 14:53–77.

    Article  CAS  Google Scholar 

  • Mansour M, Parlar H, Korte F (1980) Photoinduziere deuterierung monosubstituierter dichlorbenzole. Chemosphere 9:59–60.

    Article  CAS  Google Scholar 

  • Matsunaka S (1976) Diphenyl ethers. In: Kearney PC, Kaufman DD (eds) Herbicides: Chemistry, Degradation, and Mode of Action, Vol. 2, Marcel Dekker, New York, p710.

    Google Scholar 

  • McEwen FL, Stephenson GR (1979) The Use of Significance of Pesticides in the Environment. John Wiley, New York, p 538.

    Google Scholar 

  • Miille MJ, Crosby DG (1983) Pentachlorophenol and 3,4-dichloroaniline as models for photochemical reactions in water. Mar Chem 14:111–120.

    Article  CAS  Google Scholar 

  • Miller GC, Crosby DG (1978) Photodecomposition of sustar in water. J Agric Food Chem 26:1316–1321.

    Article  CAS  Google Scholar 

  • Moilanen KW, Crosby DG (1974) Photodecomposition of bromacil. Arch Environ Contam Toxicol 2:3–8.

    Article  PubMed  CAS  Google Scholar 

  • Moilanen KW, Crosby DG (1972) Photodecomposition of 3′,4′-dichloropropionanilide (propanil). J Agric Food Chem 20:950–953.

    Article  PubMed  CAS  Google Scholar 

  • Moilanen KW, Crosby DG, Soderquist CJ, Wong AS (1979) Dynamic aspects of pesticides photodecomposition. In: Haque R and Freed VH (eds) Environmental Dynamics of Pesticides. Plenum Press, New York, pp 45–60.

    Google Scholar 

  • Muir DCG, Grift NP (1982) Fate of fluridone in sediment and water in laboratory and field experiments. J Agric Food Chem 30:238–244.

    Article  CAS  Google Scholar 

  • Munakata K, Kuwahara M (1969) Photochemical degradation products of pentachlorophenol. Residue Reviews 25:13–23.

    PubMed  CAS  Google Scholar 

  • Murov SL (1973) Handbook of Photochemistry. Marcel Dekker, New York, pp 1–272.

    Google Scholar 

  • National Research Council Canada (1982) Chlorinated Phenols: Criteria for Environmental Quality, Rept No. 18578, Ottawa, p 17.

    Google Scholar 

  • Nilsson C-A, Anderson K, Rappe C, Westermark S-O (1974) Chromatographic evidence for the formation of chlorodioxins from chloro-2-phenoxyphenols. J Chromatogr 96:137–147.

    Article  CAS  Google Scholar 

  • Norstrom A, Anderson K, Rappe C (1976) Formation of chlorodibenzofurans by irradiation of chlorinated diphenyl ethers. Chemosphere 5:21–24.

    Article  CAS  Google Scholar 

  • Norstorm A, Anderson K, Rappe C (1977) Studies on the formation of chlorodibenzofurans by irradiation or pyrolysis of chlorinated diphenyl ethers. Chemosphere 6:241–248.

    Article  Google Scholar 

  • Omura K, Matsuura T (1971) Photoinduced reactions. L. Photolysis of halophenols in aqueous alkali and aqueous cyanide. Tetrahedron 27:3101–3109.

    Article  CAS  Google Scholar 

  • Pape BE, Zabik MJ (1972) Photochemistry of bioactive compounds. Solution phase photochemistry of symmetrical triazines. J Agric Food Chem 20:316–320.

    Article  CAS  Google Scholar 

  • Pape, BE, Zabik M J (1970) Photochemistry of bioactive compounds. Photochemistry of selected 2-chloro- and 2-methylthio-4,6-dialkylammo-S-triazine herbicides. J Agric Food Chem 18:202–207.

    Article  PubMed  CAS  Google Scholar 

  • Paris DF, Lewis DL (1973) Chemical and microbial degradation of ten selected pesticides in aquatic systems. Residue Reviews 45:95–124.

    PubMed  CAS  Google Scholar 

  • Parochetti JV, Dec GW Jr. (1978) Photodecomposition of eleven dinitroaniline herbicides. Weed Sci 26:153–156.

    CAS  Google Scholar 

  • Plimmer JR (1970) The photochemistry of halogenated herbicides. Residue Reviews 33:47–74.

    PubMed  CAS  Google Scholar 

  • Plimmer JR, Klingebiel UI (1971) Riboflavin photosensitized oxidation of 2,4-dichlorophenol: Assessment of possible chlorinated dioxin formation. Science 174:407–408.

    Article  PubMed  CAS  Google Scholar 

  • Plimmer JR, Kearney PC, Klingebill UI (1969) Photochemical desulfurization of methylthio-S-triazines. Tetrahedron Lett 3891–3892.

    Google Scholar 

  • Rejto M, Saltzman S, Acher AJ, Muszkat L (1983) Identification of sensitized photooxidation products of S-Triazine herbicides in water. J Agric Food Chem 31:138–142.

    Article  CAS  Google Scholar 

  • Roof AAM (1982) Basic Principles of Environmental Photochemistry. In: Hutzinger O (ed) The Handbook of Environmental Chemistry Vol. 2, Part B. Springer-Verlag, New York, pp 1–17.

    Google Scholar 

  • Rosen JD (1967) The photolysis of diphenamid. Bull Environ Contam Toxicol 2:349–354.

    Article  CAS  Google Scholar 

  • Ruzo LO, Lee JK, Zabik MJ (1980) Solution-phase photodecomposition of several substituted diphenyl ethers. J Agric Food Chem 28:1289–1292.

    Article  CAS  Google Scholar 

  • Saunders DG, Mosier JW (1983) Photolysis of the aquatic herbicide fluridone in aqueous solution. J Agric Food Chem 31:237–241.

    Article  CAS  Google Scholar 

  • Schnitzer M, Khan SU (1972) Humic Substances in the Environment. Marcel Dekker, New York, pp 1–304.

    Google Scholar 

  • Skurlatov YI, Zepp RG, Baughman GL (1983) Photolysis rates of (2,4,5-trichlorophenoxy) acetic acid and 4-amino-3,5,6-trichloropicolinic acid in natural waters. J Agric Food Chem 31:1065–1071.

    Article  CAS  Google Scholar 

  • Soderquist CJ, Bowers JB, Crosby DG (1977) Dissipation of molinate in a rice field. J Agric Food Chem 25:940–945.

    Article  CAS  Google Scholar 

  • Stehl RH, Papenfuss RR, Bredeweg RA, Roberts RW (1973) The stability of pentachlorophenol and chlorinated dioxins to sunlight, heat, and combustion. Adv Chem Ser 120:119–125.

    Article  CAS  Google Scholar 

  • Sullivan RG, Knoche HW, Markte JC (1980) Photolysis of trifluralin: Characterization of azobenzene and azoxybenzene photodegradation products. J Agric Food Chem 28:746–755.

    Article  CAS  Google Scholar 

  • Tanaka FS, Wien RG, Hoffer BL (1981a) Biphenyl formation in the photolysis of 3-(4-chlorophenyl)-1,1-dimethylurea (monuron) in aqueous solution. J Agric Food Chem 29:1153–1158.

    Article  CAS  Google Scholar 

  • Tanaka FS, Wien RG, Hoffer BL (1982a) Investigation of the mechanism and pathway of biphenyl formation in the photolysis of monuron. J Agric Food Chem 30:957–963.

    Article  CAS  Google Scholar 

  • Tanaka FS, Wien RG, Hoffer BL (1984) Biphenyl formation in the photolysis of aqueous herbicide solutions. Ind Eng Chem Prod Res Dev 23:1–5.

    Article  CAS  Google Scholar 

  • Tanaka FS, Wien RG, Mansager ER (1981b) Survey for surfactant effects on the photodegradation of herbicides in aqueous media. J Agric Food Chem 29: 227–230.

    Article  CAS  Google Scholar 

  • Tanaka FS, Wien RG, Mansager ER (1982b) Photolytic demethylation of monuron and demethylmonuron in aqueous solution. Pestic Sci 13:287–294.

    Article  CAS  Google Scholar 

  • Tanaka FS, Wien RG, Mansager ER (1979) Effect of nonionic surfactants on the photochemistry of 3-(4-chlorophenyl)-1,1-dimethylurea in aqueous solution. J Agric Food Chem 27:774–775.

    Article  CAS  Google Scholar 

  • Tanaka FS, Wien RG, Zaylskie RG (1977) Photolysis of 3-(4-chlorophenyl)-1,1-dimethylurea in dilute aqueous solution. J Agric Food Chem 25:1068–1072.

    Article  CAS  Google Scholar 

  • Wells CHJ (1972) Introduction to Molecular Photochemistry, Chapman and Hall, London, pp 1–139.

    Google Scholar 

  • Wong AS, Crosby DG (1981) Photodecomposition of pentachlorophenol in water. J Agric Food Chem 29:125–130.

    Article  CAS  Google Scholar 

  • Woodrow JE, Crosby DG, Seiber JN (1983) Vapor-phase photochemistry of pesticides. Residue Reviews 85:111–125.

    CAS  Google Scholar 

  • Woodrow JE, Crosby DG, Mast T, Moilanen KW, Seiber JN (1978) Rates of transformation of trifluralin and parathion vapors in air. J Agric Food Chem 26:1312–1316.

    Article  CAS  Google Scholar 

  • Worthing CR, Walker SB (1983) The Pesticide Manual, The British Crop Protection Council, London, 565 pp.

    Google Scholar 

  • Zafiriou OC, Joussot-Dubien J, Zepp RG, Zika RG (1984) Photochemistry of natural waters: Many compounds and environments are affected by sunhght-induced photochemistry. Environ Sci Technol 18:358A–371A.

    Article  CAS  Google Scholar 

  • Zepp RG (1982) Experimental approaches to environmental photochemistry. In: Hutzinger O (ed) The Handbook of Environmental Chemistry, Vol. 2. Part B, Springer-Verlag, Berlin, pp 19–44.

    Google Scholar 

  • Zepp RG, Schlotzhauer PF, Sink RM (1985) Photosensitized transformations involving electron energy transfer in natural waters: Rate of humic substances. Environ Sci Technol 19:74–81.

    Article  Google Scholar 

  • Zepp RG, Wolfe NL, Baughman GL, Hollis RC (1977) Singlet oxygen in natural waters. Nature 267:421–423.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1988 Springer-Verlag New York Inc.

About this chapter

Cite this chapter

Marcheterre, L., Choudhry, G.G., Webster, G.R.B. (1988). Environmental Photochemistry of Herbicides. In: Ware, G.W. (eds) Reviews of Environmental Contamination and Toxicology. Reviews of Environmental Contamination and Toxicology, vol 103. Springer, New York, NY. https://doi.org/10.1007/978-1-4612-3850-8_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-3850-8_2

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4612-8376-8

  • Online ISBN: 978-1-4612-3850-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics