Skip to main content

Abstract

Why study food webs in lakes? From a basic research perspective, ecological studies of lake food webs provide distinct advantages over studies in many terrestrial systems (Lampert 1987). Lake food webs are composed of organisms with relatively fast population turnover rates which interact in a relatively closed system. These features allow us to readily observe the often rapid dynamics of these systems or to experimentally manipulate these food webs and quickly assess the system response. Enclosures, ponds, and whole-lake manipulations are extremely useful experimental tools that have allowed aquatic ecologists to test hypotheses on food web structure and function that would have been difficult or impossible to address in many terrestrial systems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abrams, P. A. 1984. Foraging time optimization and interactions in food webs. Am. Nat. 124:80–96.

    Article  Google Scholar 

  • Barel, C. D. N., R. Dorit, P. H. Greenwood, G. Fryer, N. Hughes, P. B. N. Jackson, H. Kawanabe, R. H. Lowe-McConnell, M. Nagoshi, A. J. Ribbink, E. Trewavas, F. Witte and K. Yamaaoka. 1985. Destruction of fisheries in Africa’s lakes. Nature 315:19–20.

    Article  Google Scholar 

  • Bergquist, A. M., S. R. Carpenter and J. C. Latino. 1985. Shifts in phytoplankton size structure and community composition during grazing by contrasting zooplankton assemblages. Limnol. Oceanogr. 30:1037–1045.

    Article  Google Scholar 

  • Brooks, J. L. 1969. Eutrophication and changes in the composition of zooplankton. in: Eutrophication: Causes, consequences, correctives. 236–255. Washington D.C.: National Academy of Sciences.

    Google Scholar 

  • Brooks, J. L. and S. I. Dodson. 1965. Predation, body size, and composition of plankton. Science 150:28–35.

    Article  PubMed  CAS  Google Scholar 

  • Carpenter, S. R., J. F. Kitchell and J. R. Hodgson. 1985. Cascading trophic interactions and lake productivity. Bioscience 35:634–639.

    Article  Google Scholar 

  • Carpenter, S. R., J. F. Kitchell, J. R. Hodgson, P. A. Cochran, J. J. Elser, M. M. Elser, D. M. Lodge, D. Kretchmer, X. He and C. N. von Ende. 1987. Regulation of lake primary productivity by food-web structure. Ecology 68:1863–1876.

    Article  Google Scholar 

  • Chow-Fraser, P. and C. K. Wong. 1986. Dietary change during development in the freshwater calanoid copepod Epischura lacustris Forbes. Can. J. Fish. Aquat. Sci. 43:938–944.

    Article  Google Scholar 

  • Cohen, J. 1978. Food webs and niche space. Princeton: Princeton University Press.

    Google Scholar 

  • Crowder, L. B. and W. E. Cooper. 1982. Habitat structural complexity and the interaction between bluegills and their prey. Ecology 63:1802–1813.

    Article  Google Scholar 

  • Crowder, L. B., M. E. McDonald and J. A. Rice. 1987. Understanding recruitment of Lake Michigan fishes: The importance of size-based interactions between fish and zooplankton. Can. J. Fish. Aquat. Sci. 44 (Suppl. 2):141–147.

    Article  Google Scholar 

  • DeMott, W. R. and W. C. Kerfoot. 1982. Competition among cladocerans: nature of the interaction between Bosmina and Daphnia. Ecology 63:1949–1966.

    Article  Google Scholar 

  • Dodson, S. I. 1970. Complementary feeding niches sustained by size-selective predation. Limnol. Oceanogr. 15:131–137.

    Google Scholar 

  • Drenner, R. W., S. T. Threlkeld and M. D. McCracken. 1986. Experimental analysis of direct and indirect effects of an omnivorous filter-feeding clupeid on plankton community structure. Can. J. Fish. Aquat. Sci. 43:1935–1945.

    Article  Google Scholar 

  • Edmondson, W. T. and A. Litt. 1982. Daphnia in Lake Washington. Limnol. Oceanogr. 27:272–293.

    Article  Google Scholar 

  • Frey, D. G. 1963. Limnology in North America. Madison: University of Wisconsin Press.

    Google Scholar 

  • Hall, D. J., S. T. Threlkeld, C. Burns and P. H. Crowley. 1976. The size-efficiency hypothesis and the size structure of zooplankton communities. Ann. Rev. Ecol. Syst. 7:177–208.

    Article  Google Scholar 

  • Hambright, K. D., R. J. Trebatoski, R. W. Drenner and D. Kettle. 1986. Experimental study of the impacts of bluegill (Lepomis macrochirus) and largemouth bass (Micropterus salmoides) on pond community structure. Can. J. Fish. Aquat. Sci. 43:1171–1176.

    Article  Google Scholar 

  • Henrikson, L., H. G. Nyman, H. G. Oscarson and J. A. E. Stenson. 1980. Trophic changes without changes in external nutrient loading. Hydrobiologia 68:257–263.

    Article  CAS  Google Scholar 

  • Hrbacek, J., M. Dvorakova, V. Korinek and L. Prochazkova. 1961. Demonstration of the effect of the fish stock on the species composition of zooplankton and the intensity of metabolism of the whole plankton assemblage. Verh. Int. ver. Theoret. Angew. Limnol. 14:192–195.

    Google Scholar 

  • Hrbacek, J. 1962. Species composition and the amount of zooplankton in relation to fish stock. Rozpravy Ceshoslovenske Akademie Ved Rada Matematickych a Prodnich Ved 72:1–116.

    Google Scholar 

  • Hurlburt, S. H., J. Zedier and D. Fairbanks. 1971. Ecosystem alteration by mosquitofish (Gambusia affinis) predation. Science 178:639–641.

    Google Scholar 

  • Jenkins, R. M. 1979. Predator-prey relations in reservoirs, in: Predator-prey systems in fisheries management, ed. R. H. Stroud and H. Clepper, 123–134. Washington D.C.: Sport Fishing Institute.

    Google Scholar 

  • Kerfoot, W. C. 1987. Cascading effects and indirect pathways, in: Predation: Direct and indirect impacts on aquatic communities, ed. W. C. Kerfoot and A. Sih, 57–70. Hanover: University Press of New England.

    Google Scholar 

  • Kerfoot, W. C. and W. R. DeMott. 1984. Food web dynamics: dependent chains and vaulting, in: Trophic interactions within aquatic ecosystems, ed. D. G. Meyers and J. R. Strickler, 347–382. Boulder: Westview Press.

    Google Scholar 

  • Kerfoot, W. C. and A. Sih, eds. 1987. Predation: Direct and indirect impacts on aquatic communities. Hanover: University Press of New England.

    Google Scholar 

  • Kerr, S. R. 1980. Niche theory and fisheries ecology. Trans. Amer. Fish. Soc. 109:254–257.

    Article  Google Scholar 

  • Kitchell, J. F., J. F. Koonce and P. S. Tennis. 1975. Phosphorus flux through fishes. Verh. Internat. Verein. Limnol. 19:2478–2484.

    Google Scholar 

  • Kitchell, J. F. and L. B. Crowder. 1986. Predator-prey interactions in Lake Michigan: Model predictions and recent dynamics. Env. Biol. Fish. 16:205–211.

    Article  Google Scholar 

  • Lampert, W. 1987. Predictability in lake ecosystems: The role of biotic interactions. in: Ecological studies, Vol. 61, ed. E.-D. Schulze and H. Zwolfer, 333–346. Berlin: Springer-Verlag.

    Google Scholar 

  • Lampert, W., W. Fleckner, H. Rai and B. E. Taylor. 1986. Phytoplankton control by grazing zooplankton: Study on the spring clear-water phase. Limnol. Oceanogr. 31:487–490.

    Article  Google Scholar 

  • Lasenby, D. C., T. G. Northcote and M. Furst. 1986. Theory, practice and effects of Mysis relicta introductions of North American and Scandinavian Lakes. Can. J. Fish. Aquat. Sci. 43:1277–1284.

    Article  Google Scholar 

  • Levine, S. H. 1976. Competitive interactions in ecosystems. Am. Nat. 110:903–910.

    Article  Google Scholar 

  • Levitan, C., W. C. Kerfoot and W. R. DeMott. 1985. Ability of Daphnia to buffer trout lakes against periodic nutrient inputs. Verh. Internat. Verein. Limnol. 22:1–7.

    Google Scholar 

  • Losos, B. and J. Hetesa. 1973. The effect of mineral fertilization and of carp fry on the composition and dynamics of plankton. Hydrobiological Studies 3:173–217.

    Google Scholar 

  • Lubchenco, J. 1978. Plant species diversity in a marine rocky intertidal community: Importance of herbivore food preference and algal competitive abilities. Am. Nat. 112:23–39.

    Article  Google Scholar 

  • Lynch, M. 1979. Predation, competition, and zooplankton community structure: An experimental study. Limnol. Oceanogr. 24:253–72.

    Article  Google Scholar 

  • Lynch, M. and J. Shapiro, 1981. Predation, enrichment, and phytoplankton community structure. Limnol. Oceanogr. 26: 86–102.

    Article  Google Scholar 

  • McQueen, D. J. and J. R. Post. 1984. Effects of planktivorous fish on zooplankton, phytoplankton and water chemistry. Lake and Reservoir Management, Proceedings of the Fourth Annual Conference, NALMS, McAfee, New Jersey.

    Google Scholar 

  • McQueen, D. J., J. R. Post and E. L. Mills. 1986. Trophic relationships in freshwater pelagic ecosystems. Can. J. Fish. Aquat. Sci. 43:1571–1581.

    Article  Google Scholar 

  • Mills, E. L., J. L. Forney and K. J. Wagner. 1987. Fish predation and its cascading effect on the Oneida Lake food chain, in: Predation: Direct and indirect impacts on aquatic communities, ed. W. C. Kerfoot and A. Sih, 118–131. Hanover: University Press of New England.

    Google Scholar 

  • Mittelbach, G. G. 1984. Predation and resource partitioning in two sunfishes (Centrarchidae). Ecology 65:499–513.

    Article  Google Scholar 

  • Mittelbach, G. G. and P. L. Chesson. 1987. Predation risk: Indirect effects on fish populations, in: Predation: Direct and indirect impacts on aquatic communities, ed. W. C. Kerfoot and A. Sih, 315–332. Hanover: University Press of New England.

    Google Scholar 

  • Neill, W. E. 1985. The effects of herbivore competition upon the dynamics of Chaoborus predation. Arch. Hydrobiol. 21: 483–491.

    Google Scholar 

  • Neill, W. E. and A. Peacock. 1980. Breaking the bottleneck: Interactions of invertebrate predators and nutrients in oligotrophic lakes, in: Evolution and Ecology of Zooplankton Communities, ed. W. C. Kerfoot, 715–724. Hanover: University Press of New England.

    Google Scholar 

  • Noble, R. L. 1981. Management of forage fishes in impoundments of the southern United States. Trans. Amer. Fish. Soc. 110:738–750.

    Article  Google Scholar 

  • Pace, M. L. 1984. Zooplankton community structure, but not biomass, influences the phosphorus-chlorophyll a relationship. Can. J. Fish. Aquat. Sci. 41:1089–1096.

    Article  Google Scholar 

  • Paine, R. T. 1966. Food web complexity and species diversity. Am. Nat. 100:65–75.

    Article  Google Scholar 

  • Paine, R. T. 1980. Food webs, linkage interaction strength, and community infrastructure. J. Anim. Ecol. 49:667–685.

    Article  Google Scholar 

  • Pimm, S. L. 1980. Properties of food webs. Ecology 61:219–225.

    Article  Google Scholar 

  • Pimm, S. L. 1982. Food webs. London: Chapman and Hall.

    Google Scholar 

  • Porter, K. G. and R. McDonogough. 1984. The energetic cost of response to blue-green algal filaments by cladocerans. Limnol. Oceanogr. 29:365–369.

    Article  Google Scholar 

  • Post, J. R. and D. J. McQueen. 1987. The impact of planktivorous fish on the structure of a plankton community. Freshwater Biology 17:79–89.

    Article  Google Scholar 

  • Power, M. E. 1984. Depth distribution of armored catfish: Predator induced resource avoidance? Ecology 65:523–528.

    Article  Google Scholar 

  • Power, M. E. 1987. Predator avoidance by grazing fishes in temperate and tropical streams: Importance of stream depth and prey size, in: Predation: Direct and indirect impacts on aquatic communities, ed. W. C. Kerfoot and A. Sih, 333–351. Hanover: University Press of New England.

    Google Scholar 

  • Rigler, F. H. 1982. The relation between fisheries management and limnology. Trans. Amer. Fish. Soc. 111:121–132.

    Article  Google Scholar 

  • Ryder, R. A. 1965. A method for estimating the fish production of north-temperate lakes. Trans. Amer. Fish. Soc. 94: 214–218.

    Article  Google Scholar 

  • Scavia, D., G. L. Fahnenstiel, M. S. Evans, D. Jude and J. T. Lehman. 1986. Influence of salmonine predation and weather on long-term water quality trends in Lake Michigan. Can. J. Fish. Aquat. Sci. 43:435–443.

    Article  CAS  Google Scholar 

  • Schoenberg, S. A. and R. E. Carlson. 1984. Direct and indirect effects of zooplankton grazing on phytoplankton in a hypereutrophic lake. Oikos 42:291–302.

    Article  CAS  Google Scholar 

  • Shapiro, J., V. Lamarra and M. Lynch. 1975. Biomanipulation: An ecosystem approach to lake restoration, in: Proceeding of a symposium on water quality management through biological control, ed. P. L. Brezonik and J. L. Fox, 85–96. Gainesville: University of Florida.

    Google Scholar 

  • Shapiro, J. and D. I. Wright. 1984. Lake restoration by biomanipulation: Round Lake, Minnesota, the first two years. Freshwater Biol. 14:371–383.

    Article  Google Scholar 

  • Sih, A. 1980. Optimal behavior: Can foragers balance two conflicting demands? Science 210:1041–43.

    Article  PubMed  CAS  Google Scholar 

  • Sih, A., P. Crowley, M. McPeek, J. Petrankaand, K. Strohmeier. 1985. Predation, competition, and prey communities: A review of field experiments. Ann. Rev. Ecol. Syst. 16: 269–305.

    Article  Google Scholar 

  • Smith, V. H. 1983. Low nitrogen to phosphorus ratios favor dominance by blue-green algae in lake phytoplankton. Science 221:669–671.

    Article  PubMed  CAS  Google Scholar 

  • Sommer, U. 1985a. Comparison between steady state and non-steady state competition: Experiments with natural phytoplankton. Limnol. Oceanogr. 30:335–346.

    Article  CAS  Google Scholar 

  • Sommer, U. 1985b. Seasonal succession of phytoplankton in Lake Constance. BioScience 35:351–357.

    Article  Google Scholar 

  • Sommer, U., Z. M. Gliwicz, W. Lampert and A. Duncan. 1986. The PEG model of seasonal succession of planktonic events in freshwaters. Arch. Hydrobiol. 106:433–471.

    Google Scholar 

  • Spencer, C. N. and D. L. King. 1984. Role of fish in regulation of plant and animal communities in eutrophic ponds. Can. J. Fish. Aquat. Sci. 41:1851–1855.

    Article  Google Scholar 

  • Spencer, C. N. and D. L. King. 1986. Regulation of blue-green algal buoyancy and bloom formation by light, inorganic nitrogen, CO2, and trophic level interactions. Hydrobiologia 144:183–192.

    Article  Google Scholar 

  • Threlkeld, S. T. 1987. Experimental evaluation of trophic-cascade and nutrient-mediated effects of planktivorous fish on plankton community structure, in: Predation: Direct and indirect impacts on aquatic communities, ed. W. C. Kerfoot and A. Sih, 161–173. Hanover: University Press of New England.

    Google Scholar 

  • Vanni, M. J. 1986. Competition in zooplankton communities: Suppression of small species by Daphnia pulex. Limnol. Oceanogr. 31:1039–1056.

    Article  CAS  Google Scholar 

  • Vanni, M. J. 1987a. Effects of food availability and fish predation on a zooplankton community. Ecological monographs 57:61–88.

    Article  Google Scholar 

  • Vanni, M. J. 1987b. Effects of nutrients and zooplankton size on the structure of a phytoplankton community. Ecology 68: 624–635.

    Article  Google Scholar 

  • Webster, K. and R. Peters. 1978. Some size-dependent inhibitions of larger cladocera filterers in filamentous suspensions. Limnol. Oceanogr. 23:1238–1245.

    Article  Google Scholar 

  • Werner, E. E. 1980. Niche theory in fisheries ecology. Trans. Amer. Fish. Soc. 109:257–260.

    Google Scholar 

  • Werner, E. E., J. F. Gilliam, D. J. Hall and G. G. Mittelbach. 1983. An experimental test of the effects of predation risk on habitat use in fish. Ecology 64:1540–1548.

    Article  Google Scholar 

  • Werner, E. E. and J. F. Gilliam. 1984. The ontogenetic niche and species interactions in size-structured populations. Ann. Rev. Ecol. Syst. 15:393–425.

    Article  Google Scholar 

  • Wetzel, R. G. and P. H. Rich. 1973. Carbon in freshwater systems, in: Carbon and the Biosphere, ed. G. M. Woodwell and E. V. Pecan. U.S. AEC Symp. Ser. CONF-720510. Nat. Tech. Inform. Service, Springfield, VA.

    Google Scholar 

  • Williamson, C. E. 1987. Predator-prey interactions between omnivorous diaptomid copepods and rotifers: The role of prey morphology and behavior. Limnol. Oceanogr. 32:167–177.

    Article  Google Scholar 

  • Zaret, T. M. 1980. Predation in freshwater communities. New Haven: Yale University Press.

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1988 Springer-Verlag New York Inc.

About this chapter

Cite this chapter

Crowder, L.B. et al. (1988). Food Web Interactions in Lakes. In: Carpenter, S.R. (eds) Complex Interactions in Lake Communities. Springer, New York, NY. https://doi.org/10.1007/978-1-4612-3838-6_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-3838-6_10

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4612-8372-0

  • Online ISBN: 978-1-4612-3838-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics