Skip to main content

Towards a Unified Theory of Plant Defense

  • Conference paper
Mechanisms of Woody Plant Defenses Against Insects

Abstract

Current theories of plant defense have arisen from several different viewpoints. Plant pathologists, being mainly interested in organisms that invade plant tissues and in problems involving exotic (unadapted) plant/pathogen interactions, have concentrated on the dynamic aspects of cellular defense (e.g., hypersensitive reactions and phytoalexins) and the genetic basis of plant resistance (e.g., the gene-for-gene hypothesis) (see Bailey and Deverall 1983). On the other hand, entomologists have been strongly influenced by the concepts of static (preformed or constitutive) plant resistance (Painter 1951). A few, however, borrowed from the pathology literature to develop concepts of dynamic (induced) defense against insect herbivores. Not surprisingly, these early workers studied insects that penetrate plant tissues and/or vector plant pathogens, e.g., aphids, (Homoptera: Aphididae) (Balch et al. 1964, Mullick 1977, Rohfritsch in this volume); siricid woodwasps, (Hymenoptera: Siricidae) (Coutts and Dolezal 1966); and scolytid bark beetles, (Coleoptera: Scolytidae) (Reid et al. 1967; Berryman 1969, 1972; Shrimpton 1978; Cook and Hain in this volume; Lieutier and Berryman in this volume). These studies provided an important bridge between pathology and entomology and drew attention to environmental influences on plant defensive capacity (i.e., predisposition). Theories emerging from these studies, however, have been functional rather than evolutionary.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Alfaro, R. I., H. D. Pierce, J. H. Borden, and A. C. Oehlschlager. 1981. Insect feeding and oviposition deterrents from western red cedar foliage. J. Chem. Ecol. 7: 39–48.

    Article  CAS  Google Scholar 

  • Bailey, J. A. and B. J. Deverall. 1983. The dynamics of host defense. New York: Academic Press.

    Google Scholar 

  • Balch, R. E., J. Clark, and J. M. Bonga. 1964. Hormonal action in production of tumors and compression wood by an aphid. Nature 202: 721–722.

    Article  Google Scholar 

  • Baltensweiler, W., G. Benz, P. Bovey, and V. Delucchi. 1977. Dynamics of larch bud moth populations. Annu. Rev. Entomol. 22: 79–100.

    Article  Google Scholar 

  • Berryman, A. A. 1969. Responses of Abies qrandis to attack by Scolytus ventralis (Coleoptera: Scolytidae). Can. Entomol. 101: 1033–1042.

    Article  Google Scholar 

  • Berryman, A. A. 1972. Resistance of conifers to invasion by bark beetle-fungus associations. BioScience 22: 598–602.

    Article  Google Scholar 

  • Berryman, A. A. 1981. Population systems: a general introduction. New York: Plenum Press.

    Google Scholar 

  • Bryant, J. P. 1981. Phytochemical deterrence of snowshoe hare browsing by adventitious shoots of four Alaskan trees. Science 213: 889–890.

    Article  PubMed  CAS  Google Scholar 

  • Carter, C. I. and J. F. A. Nichols. 1985. Host plant susceptibility and choice by conifer aphids. In: Site characteristics and population dynamics of lepidopteran and hymenopteran forest pests (D. Bevan and J. T. Stoakley, Eds.). Edinburgh: For. Comm. Res. Dev. Pap. 135; 94–99.

    Google Scholar 

  • Coley, P. D., J. P. Bryant, and F. S. Chapin, III. 1985. Resource availability and plant antiherbivore defense. Science 230: 895–899.

    Article  PubMed  CAS  Google Scholar 

  • Coutts, M. P. and J. E. Dolezal. 1966. Polyphenols and resin in the resistance mechanism of Pinus radiata attacked by the wood wasp, Sirex noctilio and its associated fungus. Comm. Australia, For. Timb. Bur. Leaflet 101, 19 p.

    Google Scholar 

  • Cowling, E. B. and J. G. Horsfall. 1980. Chapter 1. In: Plant disease: An advanced treatise ( J. G. Horsfall and E. B. Cowling, Eds.). New York: Academic Press.

    Google Scholar 

  • Croteau, R. and M.A. Johnson. 1985. Chapter 15. Biosynthesis of terpenoid wood extractives. In: Biosynthesis and degradation of wood components ( P. Higuchi, Ed.). New York: Academic Press.

    Google Scholar 

  • Darvill, A. G. and P. Albersheim. 1984. Phytoalexins and their elicitors-a defense against microbial infection in plants. Annu. Rev. Plant Physiol. 35: 243–275.

    Article  CAS  Google Scholar 

  • Edwards, P. J. and S. D. Wratten. 1983. Wound induced defenses in plants and their consequences for patterns of insect grazing. Oecologia (Berlin) 59: 88–93.

    Article  Google Scholar 

  • Feeny, P. 197 6. Plant apparency and chemical defense. Rec. Adv. Phytochem. 10: 1–40.

    Google Scholar 

  • Grandison, G. W. 1977. Relationship of plant-parasitic nematodes and their hosts. N. Z. Entomol. 6: 262–267.

    Google Scholar 

  • Hanover, J. W. 1975. Physiology of tree resistance to insects. Annu. Rev. Entomol. 20: 75–95.

    Article  CAS  Google Scholar 

  • Haukioja, E. 1980. On the role of plant defenses in the fluctuation of herbivore populations. Oikos 35: 202–213.

    Article  Google Scholar 

  • Isaev, A. S., Y. N. Baranchikov, and V. S. Malutina. 1987. (In press). Chapter 2. The larch gall midge in seed orchards of South Siberia. In: Dynamics of forest insect populations: patterns, causes, implications (A. A. Berryman, Ed.). New York: Plenum Press.

    Google Scholar 

  • Klement, Z. and R. N. Goodman. 1967. The hypersensitive reaction to infection by bacterial plant pathogens. Ann. Rev. Phytopath. 5: 17–44.

    Article  Google Scholar 

  • Kuc, J. 1983. Chapter 5. Induced systemic resistance in plants to diseases caused by fungi and bacteria. In: The dynamics of plant defense ( J. A. Bailey and B. J. Deverall, Eds.). New York: Academic Press.

    Google Scholar 

  • Mattson, W. J. 1980. Cone resources and the ecology of the red pine cone beetle, Conophthorus resinosae (Coleoptera: Scolytidae). Ann. Entomol. Soc. Amer. 73: 390–396.

    Google Scholar 

  • Miller, R. A., and A. A. Berryman. 1985. Energetics of conifer defense against bark beetles and associated fungi. In: The role of the host in the population dynamics of forest insects (L. Safranyik, Ed.); Proceedings, IUFRO Conference; 1983 September 4–7; Banff, Alberta. Victoria, BC: Canadian Forestry Service and USDA, Forest Service; 13–23.

    Google Scholar 

  • Miller, R. A., A. A. Berryman, and C. A. Ryan. 1986. Biotic elicitors of defense reactions in lodgepole pine. Phytochem. 25: 611–612.

    Article  CAS  Google Scholar 

  • Mullick, B. D. 1977. The non-specific nature of defense in bark and wood during wounding, insect and pathogen attack. Recent Adv. Phytochem. 11: 395–441.

    CAS  Google Scholar 

  • Painter, R. H. 1951. Insect resistance in crop plants. New York: Macmillan.

    Google Scholar 

  • Peterman, R. M. 1978. The ecological role of the mountain pine beetle in lodgepole pine forests. In: Theory and practice of mountain pine beetle management in lodgepole pine forests ( A. A. Berryman, G. D. Amman, R. W. Stark, and D. L. Kibbee, Eds.). Moscow, ID: College of Forest Resources, Univ. Idaho; 16–26.

    Google Scholar 

  • Raffa, K. F. and A. A. Berryman. 1987. Interacting selective pressures in conifer-bark beetle systems: a basis for reciprocal adaptations? Amer. Nat. 129: 234–262.

    Article  Google Scholar 

  • Reid, R. W., H. S. Whitney, and J. A. Watson. 1967. Reactions of lodgepole pine to attack by Dendroctonus ponderosae Hopkins and blue stain fungi. Can. J. Bot. 45: 1115–1116.

    Article  Google Scholar 

  • Rhoades, D. F. 1979. Chapter 1. Evolution of plant chemical defense against herbivores. In: Herbivores: their interaction with secondary plant metabolites ( G. A. Rosenthal, Ed.). New York: Academic Press.

    Google Scholar 

  • Rhoades, D. F. 1985. Offensive-defensive interactions between herbivores and plants: Their relevance in herbivore population dynamics and ecological theory. Am. Nat. 125: 205–238.

    Article  Google Scholar 

  • Rhoades, D. F. and R. G. Cates. 197 6. Towards a general theory of plant antiherbivore chemistry. Recent. Adv. Phytochem. 10: 168–213.

    Google Scholar 

  • Roques, A. 1987. (In press). Chapter 1. The larch cone fly in the French Alps. In: Dynamics of forest insect populations: patterns, causes, implications (A. A. Berryman, Ed.). New York: Plenum Press.

    Google Scholar 

  • Ryan, C. A. 1974. Assay and biochemical properties of the proteinase inhibitor-inducing factor, a wound hormone. Plant Physiol. 54: 328–332.

    Article  PubMed  CAS  Google Scholar 

  • Ryan, C. A. 1984. Defense responses of plants. In: Advances in plant gene research ( O. S. P. Verma and T. Hohns, Eds.). Berlin: Springer-Verlag; 321–332.

    Google Scholar 

  • Sequeira, L. 1983. Mechanisms of induced resistance in plants. Annu. Rev. Microbiol. 37: 51–79.

    Article  PubMed  CAS  Google Scholar 

  • Shrimpton, D. M. 1978. Resistance of lodgepole pine to mountain pine beetle infestation. In: Theory and practice of mountain pine beetle management in lodgepole pine forests ( A. A. Berryman, G. D. Amman, R. W. Stark, and D. L. Kibbee, Eds.). Moscow, ID: College of Forest Resources, Univ. Idaho; 64–76.

    Google Scholar 

  • Thompson, J. N. 1982. Interaction and coevolution. New York: John Wiley and Sons, 179 p.

    Google Scholar 

  • Thompson, J. N. 1986. Constraints on arms races in coevolution. Trends Ecol. Evol. 1: 105–107.

    Article  PubMed  CAS  Google Scholar 

  • VanLoon, L. C. 1983. Chapter 4. Mechanisms of resistance in virus-infected plants. In: The dynamics of host defense ( J. A. Bailey and B. J. Deverall, Eds.). New York: Academic Press.

    Google Scholar 

  • White, T. C. R. 1978. The importance of relative food shortage in animal ecology. Oecologia (Berlin) 33: 71–86.

    Article  Google Scholar 

  • Wong, B. L. and A. A. Berryman. 1977. Host resistance to the fir engraver beetle. 3. Lesion development and containment of infection by resistance Abies grandis inoculated with Trichosporium svmbioticum. Can. J. Bot. 55: 2358–2365.

    Article  Google Scholar 

  • Wright, L. C., A. A. Berryman, and S. Gurusiddaiah. 1979. Host resistance to the fir engraver beetle, Scolvtus ventralis (Coleoptera: Scolytidae). 4. Effect of defoliation on wound monoterpenes and inner bark carbohydrate concentrations. Can. Entornol. 111 1255–1261.

    Article  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1988 Springer-Verlag New York Inc.

About this paper

Cite this paper

Berryman, A.A. (1988). Towards a Unified Theory of Plant Defense. In: Mattson, W.J., Levieux, J., Bernard-Dagan, C. (eds) Mechanisms of Woody Plant Defenses Against Insects. Springer, New York, NY. https://doi.org/10.1007/978-1-4612-3828-7_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-3828-7_2

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4612-8368-3

  • Online ISBN: 978-1-4612-3828-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics