Effects of Anesthetic Drugs on Spinal Cord Monitoring: An Update

  • W. T. Frazier


The plan of this brief paper is to do the following:
  1. A.

    Summarize the material presented at the 1984 meeting in Erlangen, including some impressions of the consensus (and/or lack thereof) in the discussion periods.

  2. B.

    Review some of the major papers (and abstracts) appearing since the time of preparation for the 1984 meeting.

  3. C.

    Synthesize the above in a general status of the current “state-of-the-art,” including the major limitations.

  4. D.

    Present preliminary data on a possible change in our recommended anesthetic plan (i.e., one of several possible alternates when signals seem depressed by the usual drugs).

  5. E.

    Speculate on directions of future developments in anesthetic plans for spinal cord monitoring (SCM), including possible relationship to current emerging theories of general anesthesia.



Anesthetic Drug Anesthetic Potency Spinal Cord Monitoring High Dose Fentanyl Nondepolarizing Muscle Relaxant 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Shimoji, K.; Maruyama, Y.; Shimiju, H.; Fujioka, H.; Taga, K.: Spinal cord monitoring—a review of current techniques and knowledge. In: J. Schramm; S.J. Jones (eds.): Spinal Cord Monitoring. Springer-Verlag, Berlin, Heidelberg, New York, Toronto, p. 16–28, 1985.Google Scholar
  2. 2.
    Kailda, R. et al.: Effects of Diazepam on evoked electrospinogram and evoked electromyogram in man. Anesthesia and Analgesia, 60: 197–200, 1981.Google Scholar
  3. 3.
    Kano, T.; Shimoji, K.: The effects of ketamine and neuroleptanalgesia on the evoked electrospinogram and electromyogram in man. Anesthesiology, 40: 241–246, 1974.PubMedCrossRefGoogle Scholar
  4. 4.
    Maruyama, Y. et al.: Effects of Morphine on human spinal cord and peripheral nervous activities. Pain, 8: 63–73, 1980.PubMedCrossRefGoogle Scholar
  5. 5.
    Shimoji, K. et al.: Evoked spinal electrograms recorded from epidural space in man. J. Applied Physiol., 33: 468–471, 1972.Google Scholar
  6. 6.
    Shimoji, K. et al.: The effects of Thiamylal Sodium on electrical activities of the central and peripheral nervous systems in man. Anesthesiology, 40: 234–240, 974.PubMedCrossRefGoogle Scholar
  7. 7.
    Shimoji, K. et al.: Presynaptic inhibition in man during anesthesia and sleep. Anesthesiology, 43: 388–391, 1975.PubMedCrossRefGoogle Scholar
  8. 8.
    Thurner, F.; Schramm, J.; Romstck, J.: Effects of fentanyl and enflurane on cortical and subcortical SEP during general anesthesia in man. In: J. Schramm; S.J. Jones (eds.): Spinal Cord Monitoring. Springer-Verlag, Berlin, Heidelberg, New York, Toronto, pp. 82–89, 1985.Google Scholar
  9. 9.
    Koht, A.; Sloan, T.; Ronai, A.; Toleikis, J.: Intraoperative deterioration of evoked potentials during spinal surgery. In: J. Schramm; S.J. Jones (eds.): Spinal Cord Monitoring. Springer-Verlag, Berlin, Heidelberg, New York, Toronto, pp. 161–166, 1985.Google Scholar
  10. Frazier, W.T. et al.: Anesthetic technique for spinal cord monitoring. In: J. Schramm; S.J. Jones (eds.): Spinal Cord Monitoring. Springer-Verlag, Berlin, Heidelberg, New York, Toronto, pp. 69–81, 1985.Google Scholar
  11. 11.
    Carlson, C.A.: Somatosensory evoked potential monitoring in aortic coarction surgery: Failure to predict adverse neurologic outcome. Tenth Annual Gulf/Atlantic Resident’s Conference, Atlanta, Georgia, 1984.Google Scholar
  12. 12.
    McPherson, R.W.; Johnson, R.M.; Traystman, R.J.: Synergistic effects of N2O and fentanyl or the somatosensory evoked potential in dogs. Anesthesiology, Vol. 59, No. 3, A317, September, 1983.Google Scholar
  13. 13.
    Peterson, D.O.; Drummond, J.C.; Todd, M.M.: Effects of halothane and isoflurane on somatosensory evoked potentials in dogs. Anesthesiology, Vol. 61, No. 3A, A344, September, 1984.CrossRefGoogle Scholar
  14. 14.
    Drummond, J.C.; Todd, M.M.; Sang, U.H.: The effect of high dose sodium thiopental on brain stem auditory and median nerve somatosensory evoked responses in humans. Anesthesiology, 62: 249–254, 1985.CrossRefGoogle Scholar
  15. 15.
    McPherson, R.W.; Mahla, M.; Johnson, R.; Traystman, R.J.: Effects of enflurane, isoflurane, and nitrous oxide on somatosensory evoked potentials during fentanyl anesthesia. Anesthesiology, 62: 626–633, 1985.PubMedCrossRefGoogle Scholar
  16. 16.
    Sloan, T.B.; Koht, A.: Depression of cortical somatosensory evoked potentials by nitrous oxide. British J. Anaesth., 57: 849–852, 1985.CrossRefGoogle Scholar
  17. 17.
    Koht, A.; Kumovec, M.A.; Sloan, T.B.; Carlvin, A.O.: The effects of sufentanil on median nerve somatosensory evoked potentials. Anesth. Analg., 65: S1–S170, S81, 1986.Google Scholar
  18. 18.
    Bird, J.; Donegan, J.; Rupp, S.; White, P.; Sassler, D.: Effects of sufentanil bolus and two steady state infusions on median nerve evoked potentials. Anesthesiology, Vol. 65, No. 3A, A341, September, 1986.CrossRefGoogle Scholar
  19. 19.
    Kalkman, C.J.; van Rheineck, A.T.; Hesselink, E.M.; Bovil, J.G.: Effects of Etomidate or Midazolam on median nerve somatosensory evoked potentials. Anesthesiology, Vol. 65, No. 3A, A356, September, 1986.CrossRefGoogle Scholar
  20. 20.
    Kochs, E. et al.: Alterations of somatosensory evoked potentials by etomidate and diprivan. Anesthesiology, Vol. 65, No. 3A, A353, September, 1986.CrossRefGoogle Scholar
  21. 21.
    Ausems, M.E.; Hug, C.C.; Stanski, D.R.; Burm, A.G.L.: Plasma concentrations of alfentanil required to supplement nitrous oxide anesthesia for general surgery. Anesthesiology, 65: 362–373, 1986.PubMedCrossRefGoogle Scholar
  22. 22.
    Murphy, M.R.; Hug, C.C.: The anesthetic potency of fentanyl in terms of its reduction of enflurane MAC. Anesthesiology, 57: 485–488, 1982.PubMedCrossRefGoogle Scholar
  23. 23.
    Hug, C.C.: What are the roles of narcotic analgesia in anesthesia? Refresher Courses in Anesthesiology (American Society of Anesthesiologists, Inc.), 9: 71–83.Google Scholar
  24. 24.
    Wanscher, M.; Tonnesen, E.; Huttel, M.; Larsen, K.: Etomidate infusion and adrenocortical function—a study in elective surgery. ACTA Anesthesiology Scandinavia, 29: 483–485, 1985.CrossRefGoogle Scholar
  25. Haefely, W.; Pole, P.: Physiology of GABA Enhancement by benzodiazepines and barbiturates. Benzodiazepine/GABA Receptors and Chloride Channels: Structural and Functional Properties. Alan R. Liss, Inc.Google Scholar
  26. Miller, K.W.: The nature of the site of general anesthesia. In: J.R. Smythies; R.J. Bradley (eds.): International Review of Neurobiology, Academic Press, 27: 1–61, 1985.Google Scholar
  27. 27.
    Krnjevic, K.: Cellular and synaptic effects of general anesthetics. In: S.H. Roth; K.W. Miller (eds.): Molecular and Cellular Mechanisms of Anesthetics, Plenum Publishing Corporation, pp. 1–16, 1986.Google Scholar
  28. 28.
    Nicoll, R.A.; Madison, D.V.: General anesthetics hyperpolarize neurons in vertebrate central nervous system. Science, 217: 1055–1057, 1982.PubMedCrossRefGoogle Scholar
  29. 29.
    Frazier, W.T.: Effects of thiopental and ketamine on neurons in the isolated abdominal ganglion of apylsia. Fifth International Congress on Pharmacology, A-428, p. 72, July, 1972.Google Scholar
  30. 30.
    Lodge, D.; Amis, N.A.: Effects of Phencyclidine on excitatory amino acid activation of spinal inter-neurons in the cat. Europ. J. Pharm., 77: 203–204, 1982.CrossRefGoogle Scholar
  31. 31.
    Amis, N.A.; Berry, S.C.; Burton, N.R. et al.: The dissociative anesthetics, ketamine and phencyclidine, selectively reduce excitation of central mammalian neurons by N-methyl-aspartate. British J. Pharm., 79: 565–575, 1983.Google Scholar

Copyright information

© Springer-Verlag New York Inc. 1988

Authors and Affiliations

  • W. T. Frazier
    • 1
  1. 1.Department of AnesthesiologyEmory University School of MedicineAtlantaUSA

Personalised recommendations