Advertisement

Cruciform Transitions Assayed Using a Psoralen Crosslinking Method: Applications to measurements of DNA torsional tension

  • David E. Pettijohn
  • Richard R. Sinden
  • Steven S. Broyles

Abstract

It is now established that cruciform structures can form in supercoiled DNA at sites of inverted repeat sequences. Several different methods have been developed for detecting cruciforms, including: scission of the DNA with nucleases specific for the unpaired bases at the termini of cruciform arms (Lilley, 1980, 1981; Panayotatos et al; Singleton et al,); scission with restriction enzymes (Geliert et al; Courey et al); electrophoretic resolution of DNA containing or not containing a cruciform (Mizuuchi et al; Geliert et al); electron microscopic observation (Mizuuchi et al).

Keywords

Linear Form Inverted Repeat Inverted Repeat Sequence Torsional Strain Cruciform Structure 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Betz, J. L. and J. R. Sadler (1981). Gene 13: 1–12.PubMedCrossRefGoogle Scholar
  2. Courey, A. J. and J. C. Wang (1983) Cell 33: 817–829.PubMedCrossRefGoogle Scholar
  3. Gellert, M., M. H. O’Dea, and K. Mizuuchi (1983). Proc. Natl. Acad. Sci. USA 80: 5545–5549.PubMedCrossRefGoogle Scholar
  4. Greaves, D. R., R. K. Patient, and D. M. J. Lilley (1985). J. Mol. Biol. 185: 461–78.PubMedCrossRefGoogle Scholar
  5. Hsieh, T. and J. C. Wang (1975). Biochemistry 14: 527–535.PubMedCrossRefGoogle Scholar
  6. Lilley, D. M. J. (1980). Proc. Natl. Acad. Sci. USA 77: 6468–6472.PubMedCrossRefGoogle Scholar
  7. Lilley, D. M. J. (1981). Nucleic Acids Res. 9: 1271–1289.PubMedCrossRefGoogle Scholar
  8. Lilley, D. M. J. (1986). In I. Booth and C. Higgins (Eds.), Symp. of the Society for General Microbiology. Regulation of Gene Expression, Cambridge University Press, pp 105–126.Google Scholar
  9. Mizuuchi, K., M. Mizuuchi and M. Geliert (1982). J. Mol. Biol. 156: 229–243.PubMedCrossRefGoogle Scholar
  10. Panayotatos, N. and R. D. Wells (1981). Nature (London) 289: 466–470.CrossRefGoogle Scholar
  11. Pettijohn, D. E. (1985) N. Nanninga (Ed.) In Molecular Cytology of Escherichia coli. Structure of the Isolated Nucleoid, Academic Press, London pp. 199–227.Google Scholar
  12. Sinden, R. R., J. O. Carlson and D. E. Pettijohn (1980) Cell 21: 773–783.PubMedCrossRefGoogle Scholar
  13. Sinden, R. R., S. S. Broyles and D. E. Pettijohn (1983). Proc. Natl. Acad. Sci. USA 80: 1797–1801.PubMedCrossRefGoogle Scholar
  14. Sinden, R. R. and D. E. Pettijohn (1984). J. Biol. Chem. 259: 6593–6600.PubMedGoogle Scholar
  15. Singleton, C. K. and R. D. Wells (1982). J. Biol. Chem. 257: 6292–6295.PubMedGoogle Scholar
  16. Vologodskii, A. V., A. N. Lukashin, V. V. Ashelevich and M. D. Kamenetskii (1979) Nucleic Acids Res. 6: 967–982.PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag New York, Inc. 1988

Authors and Affiliations

  • David E. Pettijohn
  • Richard R. Sinden
  • Steven S. Broyles

There are no affiliations available

Personalised recommendations