Biophysical Principles of Specificity and Stability of Protein-DNA Interactions: Application to RNA Polymerase (Eσ70)-Promoter Interactions

  • M. Thomas RecordJr.


Protein-DNA interactions are competitive noncovalent interactions. The rate and extent of complex formation at a specific site is affected not only by macromolecular concentration variables but also by the concentrations of low molecular weight competitors, especially electrolyte ions (Record and Mossing, 1987). Given this situation, how can one characterize the contributions of various noncovalent interactions to the stability and specificity of these complexes and to their mechanisms of formation and/or dissociation? What is the relevance of this information to understanding the regulation of these interactions in the control of gene expression? Regulation may occur at either a kinetic or thermodynamic level. For example, the control of initiation of transcription by E. coli RNA polymerase (Eσ70) occurs at the level of the kinetics of formation of open complexes at these promoters (kinetic control) (cf. McClure (1985) and references therein). The control of expression of the lac operon by lac repressor in conjunction with specific effectors (inducers) apparently occurs at the thermodynamic level (thermodynamic control): the equilibrium degree of occupancy of the operator site by repressor is thought to be the key factor regulating transcription of the lac genes (cf. vonHippel, 1979; Sellitti et al., 1987).


Noncovalent Interaction Hydrophobic Effect Standard Free Energy Change Polyelectrolyte Effect Open Complex Formation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Anderson, C.F. and M.T. Record, Jr. (1982), Ann. Rev. Phys. Chem. 33, 191–222,CrossRefGoogle Scholar
  2. Baldwin, R.L. (1986), Proc. Natl. Acad. Sci. U.S.A. 83, 8069–8072.PubMedCrossRefGoogle Scholar
  3. Berg, O.G. and P.H. von Hippel (1985), Ann. Rev. Biophys. Biophys. Chem. 14, 131–160.CrossRefGoogle Scholar
  4. Braunlin, W.H., T.J. Strick, and M.T. Record, Jr. (1982), Biopolymers 21, 1301–1314.PubMedCrossRefGoogle Scholar
  5. Braunlin, W.R., C.F. Anderson and M.T. Record, Jr.(1986), Biopolymers 25, 205–214.PubMedCrossRefGoogle Scholar
  6. Burley, S.K. and G.A. Petsko (1985), Science 229, 23–28.PubMedCrossRefGoogle Scholar
  7. Creighton, T. (1983), Proteins, W. H. Freeman, N.Y.Google Scholar
  8. Edsall, J. and H.A. MacKenzie (1978), Adv. Biophys. 10, 137–207.PubMedGoogle Scholar
  9. Fersht, A.R., J-P. Shi, J. Knill-Jones, D.M. Lowe, A.J. Wilkerson, D.M. Blow, P. Brick, P. Carter, M.M.Y. Waye and G. Winter (1985), Nature 314, 235–238.PubMedCrossRefGoogle Scholar
  10. Fried, M.G. and D.M. Crothers (1984), J. Mol. Biol. 172, 263–282.PubMedCrossRefGoogle Scholar
  11. Gill, S.J., S. F. Dec, G. Olofsson and I. Wadso (1985), J. Phys. Chem. 89, 3758–3761.CrossRefGoogle Scholar
  12. Hélène, C. and G. Lancelot (1982), Prog. Biophys. Mol. Biol. 39, 1–68.PubMedCrossRefGoogle Scholar
  13. Honig, B.H., W. L. Hubbell and R.F. Flewelling (1986), Ann. Rev. Biophys. Biophys. Chem. 15, 163–194.CrossRefGoogle Scholar
  14. Hvidt, A. (1983), Ann. Rev. Biophys. Bioeng. 12, 1–20.CrossRefGoogle Scholar
  15. Jacobsen, H. and W.H. Stockmayer (195), J. Chem. Phys. 18, 1600–1606.Google Scholar
  16. Kramer, H, M. Niemöller, M. Amouyal, B. Revet, B. vonWilcken-Bergmann and B. Müller-Hill (1987), EMBO J. 6, 1481–1491.PubMedGoogle Scholar
  17. Leirmo, S., C. Harrison, D.S. Cayley, R.R. Burgess and M.T. Record, Jr., (1987), Biochemistry 26, 2095–2101.PubMedCrossRefGoogle Scholar
  18. Lohman, T.M., P.L. deHaseth and M.T. Record, Jr. (1980), Biochemistry 19, 3522–3530.PubMedCrossRefGoogle Scholar
  19. Lohman, T.M. (1985), CRC Crit. Rev. Biochem. 19, 191–245.CrossRefGoogle Scholar
  20. Manning, G.S. (1978), Quart. Rev. Biophys. 1, 179–246.CrossRefGoogle Scholar
  21. McClure, W.R. (1985), Ann. Rev. Biochem. 54, 171–204.PubMedCrossRefGoogle Scholar
  22. Mills, P., C.F. Anderson and M.T. Record, Jr. (1985), J. Phys. Chem. 89, 3984–3994.CrossRefGoogle Scholar
  23. Mills, P., C.F. Anderson and M.T. Record, Jr. (1986), J. Phys. Chem. 90, 6541–6548.CrossRefGoogle Scholar
  24. Mossing, M.C and M.T. Record, Jr. (1985), J. Mol. Biol. 186, 295–305.PubMedCrossRefGoogle Scholar
  25. Mossing, M.C and M.T. Record, Jr. (1986), Science 233, 889–892.PubMedCrossRefGoogle Scholar
  26. Ptashne, M. (1986), Nature 322, 697–701.PubMedCrossRefGoogle Scholar
  27. Record, M.T. Jr., T.M. Lohman and P.L. deHaseth (1976), J. Mol. Biol. 107, 145–158.PubMedCrossRefGoogle Scholar
  28. Record, M.T. Jr., P.L. deHaseth and T.M. Lohman (1977), Biochemistry 16, 4791–4796.PubMedCrossRefGoogle Scholar
  29. Record, M.T. Jr., C.F. Anderson and T.M. Lohman (1978), Quart. Rev. Biophys. 11, 103–178.CrossRefGoogle Scholar
  30. Record, M.T. Jr., S.J. Mazur, P. Melancon, J.-H. Roe, S.L. Shaner and L. Unger (1981), Ann. Rev. Biochem. 50, 997–1024.PubMedCrossRefGoogle Scholar
  31. Record, M.T. Jr., C.F. Anderson, P. Mills, M. Mossing and J.-H. Roe (1985), Adv. Biophys. 20, 109–135.PubMedCrossRefGoogle Scholar
  32. Record, M.T. Jr. and M.C. Mossing (1987), in RNA Polymerase and Regulation of Transcription (W. Reznikoff et al., eds.) Elsevier Science Publishing Co, New York, pp 61–83.Google Scholar
  33. Record, M.T. Jr. and B. Richey (in press, 1987), ACS Sourcebook for Physical Chemistry Instructors (T. Lippincott, ed.).Google Scholar
  34. Richards, F.M. (1977), Ann. Rev. Biophys. Biophys. 6, 151–176.CrossRefGoogle Scholar
  35. Riggs, A.D., S. Bourgeois and M. Cohn (1970a), J. Mol. Biol. 53, 401–417.PubMedCrossRefGoogle Scholar
  36. Riggs, A.D., H. Suzuki and S. Bourgeois (1970b), J. Mol. Biol. 48, 67–83.PubMedCrossRefGoogle Scholar
  37. Roe, J.-H., and M.T. Record, Jr. (1985), Biochemistry 24, 4721–4726.PubMedCrossRefGoogle Scholar
  38. Roe, J.-H., R.R. Burgess and M.T. Record, Jr. (1985), J. Mol. Biol. 184, 441–453.PubMedCrossRefGoogle Scholar
  39. Sellitti, M.A., P.A. Pavco and D.A. Steege (1987), Proc. Natl. Acad. Sci. U.S.A. 84, 3199–3203.PubMedCrossRefGoogle Scholar
  40. Shimada, J. and H. Yamakawa (1984), Macromolecules 17, 689–698.CrossRefGoogle Scholar
  41. Shore, D. and R.L. Baldwin (1983), J. Mol. Biol. 170, 957–981.PubMedCrossRefGoogle Scholar
  42. Sturtevant, J.M. (1977), Proc. Natl. Acad. Sci. U.S.A. 74, 2236–2240.PubMedCrossRefGoogle Scholar
  43. Tanford, C. (1980), The Hydrophobic Effect (John Wiley and Sons, New York).Google Scholar
  44. von Hippel, P.H. (1979), in: Biological Regulation and Development, R.F. Goldberger, ed. (Plenum, New York) pp. 279–347.Google Scholar
  45. Whitson, P.A, J.S. Olson and K.S. Matthews (1986), Biochemistry 25, 3852–3858.PubMedCrossRefGoogle Scholar
  46. Whitson, P.A., W.-T. Hsieh, R.D. Wells and K.S. Matthews (1987), J. Biol. Chem. 262, 4943–4946.PubMedGoogle Scholar

Copyright information

© Springer-Verlag New York, Inc. 1988

Authors and Affiliations

  • M. Thomas RecordJr.
    • 1
  1. 1.Departments of Chemistry and BiochemistryUniversity of Wisconsin-MadisonMadisonUSA

Personalised recommendations