Skip to main content

Iterative Methods for Elliptic Finite Element Equations on General Meshes

  • Conference paper
Finite Elements

Part of the book series: ICASE/NASA LaRC Series ((ICASE/NASA))

Abstract

It is fair to say that the development of iterative solution techniques for all kinds of discretized partial differential equations remains a vigorous branch of numerical analysis. Perhaps the greater part of the effort has gone into multigrid algorithms, the next most common topic being preconditioning methods. Traditionally applied to elliptic problems, multigrid methods have also recently been successfully applied to solving the hyperbolic equations of gas dynamics (see [23] for a survey).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. O. Axelsson and V.A. Barker, Finite Element Solution of Boundary Value Problems, Academic Press, Orlando, 1984.

    MATH  Google Scholar 

  2. M. Bercovier and A. Rosenthal, “Using the conjugate gradient method with preconditioning for solving FEM approximations of elasticity problems,” Engrg. Comput., 3(1986), 77.

    Article  Google Scholar 

  3. P.E. Bjorstad and O.B. Widlund, “Iterative methods for the solution of elliptic problems on regions partitioned into substructures,” Technical Report 136, Courant Institute of Mathematical Sciences, New York University, 1984.

    Google Scholar 

  4. J.H. Bramble, J.E. Pasciak, and A.H. Schatz, “The construction of preconditioners for elliptic problems by substructuring,” Math. Comp., 47(1986), 103.

    Article  MATH  MathSciNet  Google Scholar 

  5. N.I. Buleev, “A numerical method for the solution of two-dimensional and three-dimensional equations of diffusion,” Mat. Sb., 51(1960), 227.

    Google Scholar 

  6. T.F. Chan and D.C. Resasco, “A survey of preconditioners for domain decomposition,” Research Report YALEU/DCS/RR-414, Department of Computer Science, Yale University, New Haven, 1985.

    Google Scholar 

  7. R. Chandra, “Conjugate gradient methods for partial differential equations,” Ph.D. dissertation, Department of Computer Science, Yale University, New Haven, 1978.

    Google Scholar 

  8. P. Concus, G.H. Golub, and G. Meurant, “Block preconditioning for the conjugate gradient method,” SI AM J. Sci. Statist. Comput., 6(1985), 220.

    Article  MATH  MathSciNet  Google Scholar 

  9. P. Concus, G.H. Golub, and D.P. O’DLeary, “A generalized conjugate gradient method for the numerical solution of elliptic partial differential equations,” Sparse Matrix Computations(J.R. Bunch and D.J. Rose, eds.), Academic Press, New York, 1976, p. 309.

    Google Scholar 

  10. M. Dryja, “A capacitance matrix method for the Dirichlet problem on polygonal region,” Numer. Math., 39(1982), 51.

    Article  MATH  MathSciNet  Google Scholar 

  11. T. Dupont, R.P. Kendall, and H.H. Rachford, Jr., “An approximate factorization procedure for solving self-adjoint elliptic difference equations” SIAM J. Numer. Anal, 5(1968), 559.

    Article  MATH  MathSciNet  Google Scholar 

  12. T. Dupont, “A factorization procedure for the solution of elliptic difference equations,” SIAM J. Numer. Anal, 5(1968), 753.

    Article  MathSciNet  Google Scholar 

  13. H.C. Elman, “Iterative methods for large, sparse, nonsymmetric systems of linear equations,” Ph.D. dissertation, Department of Computer Science, Yale University, New Haven, 1982.

    Google Scholar 

  14. G.E. Forsythe and W.R. Wasow, Finite-Difference Methods for Partial Differential Equations, Wiley, New York, 1960.

    MATH  Google Scholar 

  15. S.P. Frankel, “Convergence rates of iterative treatments of partial differential equations,” Math. Tables Aids Comput., 4(1950), 65.

    Article  MathSciNet  Google Scholar 

  16. G.H. Golub and D. Mayers, “The use of pre-conditioning over irregular regions,” Lecture at the 6th International Conference on Computing Methods in Applied Sciences and Engineering (Versailles, 1983 ).

    Google Scholar 

  17. M.D. Gunzburger and R.A. Nicolaides, “On substructuring algorithms and solution techniques for the numerical approximation of partial differential equations,” Appl Numer. Math., 2(1986).

    Google Scholar 

  18. I. Gustafsson, “A class of first-order factorization methods,” BIT, 18(1978), 142.

    Article  MATH  MathSciNet  Google Scholar 

  19. I. Gustafsson, “Modified incomplete Cholesky methods,” Preconditioning Methods: Analysis and Applications(D.J. Evans, ed.), Gordon and Breach, New York, 1983, p. 265.

    Google Scholar 

  20. W. Hackbusch, Multi-Grid Methods and Applications, Springer-Verlag, Berlin, 1985.

    Book  MATH  Google Scholar 

  21. L.A. Hageman and D.M. Young, Applied Iterative Methods, Academic Press, New York, 1981.

    MATH  Google Scholar 

  22. T.J.R. Hughes, I. Levit, and J. Winget, “Element-by-element implicit algorithms for heat conduction,” J. Engrg. Mech., 109(1983), 576.

    Article  Google Scholar 

  23. A. Jameson, “Multigrid algorithms for compressible flow calculations,” MAE Report 1743, Department of Mechanical and Aerospace Engineering, Princeton University, Princeton, NJ, 1985.

    Google Scholar 

  24. D.S. Kershaw, “The incomplete Cholesky conjugate gradient method for the iterative solution of systems of linear equations,” J. Comput. Phys., 26(1978), 43.

    Article  MATH  MathSciNet  Google Scholar 

  25. R. Löhner and K. Morgan, “An unstructured multigrid method for elliptic problems,” Internat. J. Numer. Methods Engrg. 24(1987), 101.

    Article  MATH  Google Scholar 

  26. D.G. Luenberger, Linear and Nonlinear Programming, 2nd ed., Addison-Wesley, Reading, MA, 1984.

    MATH  Google Scholar 

  27. T.A. Manteuffel, “An incomplete factorization technique for positive definite linear systems,” Math. Comp., 34(1980), 473.

    Article  MATH  MathSciNet  Google Scholar 

  28. J.A. Meijerink and H.A. van der Vorst, “An iterative solution method for linear systems of which the coefficient matrix is a symmetric M-matrix,” Math. Comp., 31(1977), 148.

    MATH  MathSciNet  Google Scholar 

  29. J.A. Meijerink and H.A. van der Vorst, “Guidelines for the usage of incomplete decompositions in solving sets of linear equations as they occur in practical problems,” J. Comput. Phys., 44(1981), 134.

    Article  MATH  MathSciNet  Google Scholar 

  30. R.A. Nicolaides, “On the l2 convergence of an algorithm for solving finite element equations,” Math. Comp., 31(1977), 892.

    MATH  MathSciNet  Google Scholar 

  31. R.A. Nicolaides, “On some theoretical and practical aspects of multigrid methods,” Math. Comp., 33(1979), 933.

    Article  MATH  MathSciNet  Google Scholar 

  32. R.A. Nicolaides, “Deflation of conjugate gradients with applications to boundary value problems,” SIAM J. Numer. Anal., 24(1987), 355.

    Article  MATH  MathSciNet  Google Scholar 

  33. B. Nour-Omid and B.N. Parlett, “Element preconditioning using splitting techniques,” SIAM J. Sci. Statist. Comput., 6(1985), 761.

    Article  MATH  MathSciNet  Google Scholar 

  34. L.F. Richardson, “The approximate arithmetical solution by finite differences of physical problems involving differential equations, with an application to the stresses in a masonry dam,” Philos. Trans. Roy. Soc. London Ser. A, 210(1910), 307, and Proc. Roy. Soc. London Ser. A, 83(1910), 335.

    Article  MATH  Google Scholar 

  35. J. Ruge and K. Stüben, “Efficient solution of finite difference and finite element equations by algebraic multigrid,” in Proceedings of the Multigrid Conference (Bristol, 1983 ).

    Google Scholar 

  36. H. Rutishauser, “Theory of gradient methods,” in Refined Iterative Methods for Computation of the Solution and the Eigenvalues of Self-Adjoint Boundary Value Problems, (by M. Engeli, T. Ginsburg, H. Rutishauser, and E. Stiefel), Birkhéuser, Basel, 1959, p. 24.

    Chapter  Google Scholar 

  37. H.L. Stone, “Iterative solution of implicit approximations of multidimensional partial differential equations,” SIAM J. Numer. Anal., 5(1968), 530.

    Article  MATH  MathSciNet  Google Scholar 

  38. R.S. Varga, Matrix Iterative Analysis, Prentice-Hall, Englewood Cliffs, N.J., 1962.

    Google Scholar 

  39. R.S. Varga, “Factorization and normalized iterative methods,” in Boundary Value Problems in Differential Equations(R.E. Langer, ed.), University of Wisconsin Press, Madison, 1960, p. 121.

    Google Scholar 

  40. D.M. Young, Iterative Solution of Large Linear Systems, Academic Press, New York, 1971.

    MATH  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1988 Springer Science+Business Media New York

About this paper

Cite this paper

Nicolaides, R.A., Choudhury, S. (1988). Iterative Methods for Elliptic Finite Element Equations on General Meshes. In: Dwoyer, D.L., Hussaini, M.Y., Voigt, R.G. (eds) Finite Elements. ICASE/NASA LaRC Series. Springer, New York, NY. https://doi.org/10.1007/978-1-4612-3786-0_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-3786-0_5

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4612-8350-8

  • Online ISBN: 978-1-4612-3786-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics