Skip to main content

Singular Finite Element Methods

  • Conference paper
  • 448 Accesses

Part of the book series: ICASE/NASA LaRC Series ((ICASE/NASA))

Abstract

The key property of elliptic systems is that their solution tends to be as smooth as the data and other factors permit. This condition strikingly constrasts with hyperbolic systems, in which singular behavior (e.g., shocks) can arise even if all inputs are smooth.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. J.L. Swedlow (ed.), The Surface Crack, ASME, New York, November, 1972.

    Google Scholar 

  2. G.R. Irwin, Fracture Mechanics, Pergamon, Elmsford, NY, 1960.

    Google Scholar 

  3. N.I. Muskhelishvili, Some Problems of the Mathematical Theory of Elasticity, North-Holland, Groningen, 1953.

    MATH  Google Scholar 

  4. A.E.H. Love, The Mathematical Theory of Elasticity, Cambridge University Press, Cambridge, UK, 1927.

    MATH  Google Scholar 

  5. A.A. Griffith, “The phenomenon of rapture and flow in solids,” Philos. Trans. Roy. Soc. Ser. (A), 221(1920), 163 – 179.

    Article  Google Scholar 

  6. G.R. Irwin, “Analysis of stresses and strains near the end of a crack,” J. Appl. Mech., 24(1957).

    Google Scholar 

  7. Milne-Thomson, Theoretical Hydrodynamics, Macmillan, New York, 1968.

    MATH  Google Scholar 

  8. G. Birkhoff, Numerical Solution of Elliptic Equations, SIAM, Philadelphia, 1971.

    MATH  Google Scholar 

  9. I. Babuska and B. Kellogg, The Mathematical Foundation of the Finite Element Method, (A.K. Aziz, ed.), Academic Press, New York, 1972.

    Google Scholar 

  10. Z. Schuss, Theory and Applications of Stochastic Differential Equations, Wiley, New York, 1980.

    MATH  Google Scholar 

  11. J.L. Zeman, Approximate Analysis of Schochastic Processes in Mechanics, Springer- Verlag, New York, 1971.

    Google Scholar 

  12. G. Strang and G.J. Fix, An Analysis of the Finite Element Method, Academic Press, New York, 1973.

    MATH  Google Scholar 

  13. J.F. Thompson, ZUA Warsi and C.W. Mastin, Numerical Grid Generation, North-Holland, Amsterdam, 1985.

    MATH  Google Scholar 

  14. K. Miller and N. Miller, “Moving finite elements,” SIAM J. Numer. Anal, 18(1981), 1019.

    Article  MATH  MathSciNet  Google Scholar 

  15. I. Babuska and W. Rheinboldt, “Error estimates for adaptive finite element computations,” SIAM J. Numer. Anal, 15(1978).

    Google Scholar 

  16. I. Babuska and G. Gus, “The h-pversion of the finite element method,” Tech. Note BN-1043, Institute for Physical Science and Technology, University of Maryland, College Park, 1985.

    Google Scholar 

  17. V.A. Kondrat’ev, “Boundary value problems for elliptic equations in domains with conic or angular points,” Trans. Moscow Math. Soc., 69(1967), 227 – 313.

    Google Scholar 

  18. V.A. Kondrat’ev and O.A. Oleinik, “Boundary value problems for partial differential equations in nonsmooth domains,” Russian Math. Surveys, 38, No. 2, (1983), 1 – 86.

    Article  MATH  Google Scholar 

  19. L. Williams, “Stress singularities resulting from various boundary conditions in angular corners,” J. Appl Mech., 19(1952), 526 – 528.

    Google Scholar 

  20. P. Grisvard, Elliptic Problems in Nonsmooth Domains, Pitman, Boston, 1985.

    MATH  Google Scholar 

  21. P. Tolksdorf, “On the behavior near the boundary of solutions of quasilinear equations,” Preprint No. 459, Universität Bonn, 1981.

    Google Scholar 

  22. L. Lehman, “Developments at an analytic corner of solutions of elliptic partial differential equations,” J. Math. Mech., 8 (1959), 727 – 760.

    MATH  MathSciNet  Google Scholar 

  23. I. Babuška, R.B. Kellogg, and Pitkaranta, “Direct and inverse error estimates for finite elements with mesh refinements,” Numer. Math., 33(1979), 447 – 471.

    Article  MATH  MathSciNet  Google Scholar 

  24. C.L. Cox and G.J. Fix, “On the accuracy of least square methods in the presence of corner singularities,” Comput. Math. Appl, 10(1984), 463 – 475.

    Article  MATH  MathSciNet  Google Scholar 

  25. G.J. Fix, S. Gulati, and G.I. Wakoff, “On the use of singular functions with finite element approximations,” J. Comput. Phys., 13(1973), 209 – 228.

    Article  MATH  MathSciNet  Google Scholar 

  26. Y. Lee, “Shear bands in elastic-perfectly plastic materials,” Ph.D. thesis, Carnegie Mellon University, 1981.

    Google Scholar 

  27. G.I. Wakoff, “Piecewise polynomial spaces and the Ritz—Galerkin method,” Ph.D. thesis, Harvard University, 1970.

    Google Scholar 

  28. R. Wait and A.R. Mitchell, “Corner singularities in elliptic problems,” J. Comput. Phys., 8 (1971), 45– 52.

    Article  MATH  Google Scholar 

  29. E. Byskov, “Calculation of stress intensity factors using finite element methods,” Internat. J. Fracture, 6(1976), 159 – 168.

    Google Scholar 

  30. W.S. Blackburn, “Calculation of stress intensity factors at crack tips using special finite elements,” in Mathematics of Finite Elements and Applications( J.R. Whiteman, ed.), Academic Press, London, 1973.

    Google Scholar 

  31. H. Blum and M. Dobrowolski, “On finite element methods for elliptic equations on domains with corners,” Computing, 25(1983), 53 – 63.

    MathSciNet  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1988 Springer Science+Business Media New York

About this paper

Cite this paper

Fix, G.J. (1988). Singular Finite Element Methods. In: Dwoyer, D.L., Hussaini, M.Y., Voigt, R.G. (eds) Finite Elements. ICASE/NASA LaRC Series. Springer, New York, NY. https://doi.org/10.1007/978-1-4612-3786-0_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-3786-0_3

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4612-8350-8

  • Online ISBN: 978-1-4612-3786-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics