Skip to main content

Transient Analysis Methods in Computational Dynamics

  • Conference paper
Finite Elements

Part of the book series: ICASE/NASA LaRC Series ((ICASE/NASA))

Abstract

Transient response analysis of structural and mechanical systems is now routinely carried out via a direct time integration procedure. Typically, the size of discrete equations that must be solved can range from 10 to 105, depending upon modeling accuracy desired and computational resources available. As a result of increasing demand for performing the transient response analysis of structural and mechanical systems in recent years, most of the existing structural analysis computer programs have a direct time integration capability. This increased demand on computational dynamics has been due to its programming simplicity, its capability for handling nonlinearities, and its adaptability to automatic error control at each time integration step, thus obviating the difficult task of including sufficient modes in modal-based dynamics analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. T. Belytschko, J.R. Osias, and P.V. Marcal (eds.), Finite Element Analysis of Transient Nonlinear Structural Behavior, AMD Series, Vol. 14, ASME, New York, 1975.

    Google Scholar 

  2. J. Donea (ed.), Advanced Structural Dynamics, Applied Science, Essex, England, 1980.

    Google Scholar 

  3. T. Belytschko and T.J.R. Hughes (eds.), Computational Methods for Transient Analysis, North-Holland, Amsterdam, 1983.

    MATH  Google Scholar 

  4. W.K. Liu, T. Belytschko, and K.C. Park (eds.), Innovative Methods for Nonlinear Problems, Pineridge Press, Swansea, Great Britain, 1985.

    Google Scholar 

  5. K.C. Park, “Time integration of structural dynamics: A survey,” in Pressure Vessels and Piping Design Technology—A Decade of Progress, ASME, New York, 1982, bk. 4.2.

    Google Scholar 

  6. P.S. Jensen, “Transient analysis of structures by stiffly stable methods,” Comput. & Structures, 4(1974), 67 – 94.

    Google Scholar 

  7. N.M. Newmark, “A method of computation for structural dynamics,” Proc. ASCE, 85, EM3 (1959), 00. 67 – 94.

    Google Scholar 

  8. D.E. Johnson, “A proof of the stability of the Houbolt method,” AIAA J., 4(1966), 1450 – 1451.

    Article  MATH  Google Scholar 

  9. R.E. Nickell, “On the stability of approximation operators in problems of structural dynamics,” Internat. J. Solids and Structures, 7(1971), 301 – 319.

    Article  MATH  Google Scholar 

  10. K.J. Bathe, and E.L. Wilson, “Stability and accuracy analysis of direct integration methods,” Internat. J. Earthquake Engrg. Struct. Dynamics, 1(1973), 283 – 291.

    Article  Google Scholar 

  11. R.D. Krieg and S.W. Key, “Transient shell response by numerical time integration,” Internat. J. Numer. Methods Engrg. 7(1973), 273 – 286.

    Article  Google Scholar 

  12. G.L. Goudreau and R.L. Taylor, “Evaluation of numerical methods in elastodynamics,” J. Comput. Methods Appl. Mech. Engrg., 2(1973), 69 – 97.

    Article  MATH  MathSciNet  Google Scholar 

  13. J.H. Argyris, P.C. Dunne, and T. Angelopoulos, “Dynamic response by large step integration,” Internat. J. Earthquake Engrg. Struct. Dynamics, 2(1973), 185 – 203.

    Article  MathSciNet  Google Scholar 

  14. K.C. Park, “An improved stiffly stable method for direct integration of nonlinear structural dynamic equations,” J. Appl. Mech., 42(1975), 464 – 470.

    Article  MATH  Google Scholar 

  15. H.M. Hilber and T.J.R. Hughes, “Collocation, dissipation and overshoot for time integration scheme in structural dynamics,” Internat. J. Earthquake Engrg. Struct. Dynamics, 6(1978), 99 – 117.

    Article  Google Scholar 

  16. G. Hall and J.M. Watt (eds.), Modern Numerical Methods for Ordinary Differential Equations, Clarendon Press, Oxford, 1976, p. 128.

    MATH  Google Scholar 

  17. G. Dahlquist, “A special stability problem for linear multi-step methods,” BIT, 3(1963), 27 – 43.

    Article  MATH  MathSciNet  Google Scholar 

  18. P.S. Jensen, “Stiffly stable methods for undamped second-order equations of motion,” SIAM J. Numer. Anal., 13(1976), 549 – 563.

    Article  MATH  MathSciNet  Google Scholar 

  19. K.C. Park, “Practical aspects of numerical time integration,” Comput. & Structures, 7(1977), 343 – 353.

    Article  MATH  Google Scholar 

  20. K.C. Park, “Evaluating time integration methods for nonlinear dynamics analysis,” in Finite Element Analysis of Transient Nonlinear Structural Behavior (T. Belytschko et al, ed.), ASME Applied Mechanics Symposia AMD, Vol. 14,1975, pp. 35–58.

    Google Scholar 

  21. W.H. Enright, T.E. Hull, and B. Lindberg, “Comparing numerical methods for stiff systems of O.D.E.’s,” BIT, 15 (1975), 10 – 48.

    Article  MATH  Google Scholar 

  22. R.K. Brayton, F.G. Gustavson, and G.D. Hachtel, “A new efficient algorithm for solving differential-algebraic systems using implicit backward differentiation formulas,” Proc. IEEE, 60 (1972), 98–108.

    Article  MathSciNet  Google Scholar 

  23. C.W. Gear, “The automatic integration of stiff ordinary differential equations,” Proceedings of the IFIP Congress, 1969, pp. 187 – 193.

    Google Scholar 

  24. J.A. Stricklin, J.E. Martinez, J.R. Tillerson, J.R. Hong, and W.E. Haisler, “Nonlinear dynamic analysis of shells of revolution by the matrix displacement method,” AIAA J., 9 (1971), 629 – 636.

    Article  MATH  Google Scholar 

  25. R.W.H. Wu and E.A. Witmer, “Nonlinear transient responses of structures by the spatial finite-element method,” AIAA J. 11(1973), 1087 – 1104.

    MathSciNet  Google Scholar 

  26. J.F. McNamara, “Solution schemes for problems of nonlinear structural dynamics,” J. Pressure Vessels Tech. ASME, 96(1974), 96 – 102.

    Article  Google Scholar 

  27. W.H. Enright and T.E. Hull, “Test results on initial value methods for nonstiff ordinary differential equations,” SIAM J. Numer. Anal., 13 (1976), 944 – 961.

    Article  MATH  MathSciNet  Google Scholar 

  28. K.C. Park and P.G. Underwood, “A variable-step central difference method for structural dynamics analysis: Theoretical aspects,” Comput. Methods Appl. Mech. Engrg., 22(1980), 241 – 258.

    Article  MATH  MathSciNet  Google Scholar 

  29. P.G. Underwood and K.C. Park, “A variable-step central difference method for structural dynamics analysis: Implementation and performance evaluation,” Comput. Methods Appl. Mech. Engrg., 23(1980), 259 – 279.

    Article  MATH  MathSciNet  Google Scholar 

  30. B. Lindberg, “Error estimates and stepsize strategy for the implicit midpoint rule with smoothing and extrapolation,” Report NA 7259, Department of Information Processing, Royal Institute of Technology, Stockholm, 1972.

    Google Scholar 

  31. H.D. Hibbit and B.I. Karlsson, “Analysis of pipe whip,” Paper 79-PVP-122, ASME, New York, 1979.

    Google Scholar 

  32. T. Belytschko and D.F. Schoeberle, “On the unconditional stability of an implicit algorithm for nonlinear structural dynamics,” J. Appl. Mech., 97(1975), 865 – 869.

    Article  Google Scholar 

  33. V. Blaes, “Zur angenaherten Losung gewohnlicher Differentialgleichungen,” VDI-Z, 81(1937), 587 – 596.

    Google Scholar 

  34. B. Lindberg, “Characterization of optimal stepsize sequences for methods for stiff differential equations,” SIAM J. Numer. Anal., 14(1977), 859 – 887.

    Article  MATH  MathSciNet  Google Scholar 

  35. K.C. Park and P.G. Underwood, “An adaptive direct time integration package for structural dynamics analysis: Design considerations,” in preparation.

    Google Scholar 

  36. C.A. Felippa and K.C. Park, “Computational aspects of time integration procedures: Implementation,” J. Appl. Math. Mech., 45(1978), 595 – 602.

    MATH  Google Scholar 

  37. J.C. Houbolt, “A recurrence matrix solution for the dynamic response of an elastic aircraft,” J. Aeronaut. Sci., 17(1950), 540 – 550.

    Article  MathSciNet  Google Scholar 

  38. C.A. Felippa, “Procedures for computer analysis of large nonlinear structural systems,” in Large Engineering Systems(A. Wexler, ed.), Pergamon, Oxford, 1977, pp. 60 – 101.

    Google Scholar 

  39. C.A. Felippa, “Solution of nonlinear static equations,” in Large Deflection and Stability of Structures( K.J. Bathe, ed.), North-Holland, Amsterdam, 1986.

    Google Scholar 

  40. D. Bushnell, “A strategy for the solution of problems involving large deflections, plasticity and creeps,” Internat. J. Numer. Methods Engrg., 11(1977), 683 – 708.

    Article  MATH  Google Scholar 

  41. H.L. Schreyer, R.F. Kulak, and J.M. Kramer, “Accurate numerical solutions for elastic-plastic models,” Preprint ASME Paper No. 79-PVP-107.

    Google Scholar 

  42. P.V. Marcal “A stiffness method foe elastic-plastic problem,” Interneal. J. Mech. Sci., (1965), 229 – 238.

    Google Scholar 

  43. J.C. Nagtegaal, D.M. Parks, and J.R. Rice, “On numerically accurate finite element solutions in the fully plastic range,” Comput. Methods Appl. Mech. Engrg., 4(1974), 153 – 177.

    Article  MATH  MathSciNet  Google Scholar 

  44. K.C. Park, “Partitioned transient analysis procedures for coupled-field problems: Stability analysis,” J. Appl. Math. Mech, 47, No. 2 (1980), 370 – 376.

    MATH  Google Scholar 

  45. T. Belytschko and R. Mullen, “Mesh partitions of explicit-implicit time integration,” in Formulations and Computational Algorithms in Finite Element Analysis, (J. Bathe et al. ed.), MIT Press, Cambridge, MA, 1977.

    Google Scholar 

  46. T. Belytschko and R. Mullen, “Stability of explicit-implicit mesh partitions in time integration,” Internat. J. Numer. Methods Engrg., 12(1978), 1575 – 1586.

    Article  MATH  Google Scholar 

  47. T.J.R. Hughes and W.K. Liu, “Implicit-explicit finite elements in transient analysis: Stability theory,” J. Appl. Math. Mech., 45(1978), 375 – 378.

    MATH  Google Scholar 

  48. K.C. Park, C.A. Felippa, and J.A. DeRuntz, “Stabilization of staggered solution procedures for fluid-structure interaction analysis,” in Computational Methods for Fluid-Structure Interaction Problems(T. Belytschko and T.L. Geers, eds.), ASME Applied Mechanics Symposia, AMD Vol. 26, ASME, New York, 1977, pp. 94 – 124.

    Google Scholar 

  49. T. Belytschko, H.-J. Yen, and R. Mullen, “Mixed methods for time integration,” Comput. Methods Appl. Mech. Engrg., 17(1979), 259 – 275.

    Article  Google Scholar 

  50. O.C. Zienkiewicz, E. Hinton, K.H. Leung, and R.E. Taylor, “Staggered time marching schemes in dynamic soil analysis and a selective explicit extrapolation algorithm,” in Innovative Numerical Analysis for the Applied Engineering Science(R. Shaw et al. eds.), The University of Virginia Press, Charlottesville, 1980, pp. 525 – 530.

    Google Scholar 

  51. K.C. Park and J.M. Housner, “Semi-explicit transient analysis procedures for structural dynamics problems,” Internat. J. Numer. Methods Engrg., 18(1982), 609 – 622.

    Article  MATH  Google Scholar 

  52. D.M. Trujillo, “An unconditionally stable explicit algorithm for structural dynamics,” Internat. J. Numer. Methods Engrg., 11(1977), 1579– 1592.

    Article  Google Scholar 

  53. J.E. Dennis Jr. and J.J. More, “Quasi-Newton methods, motivation and theory,” SIAM Rev., 19(1977), 46 – 89.

    Article  MATH  MathSciNet  Google Scholar 

  54. N.N. Yanenko, The Method of Fractional Steps, Springer-Verlag, New York, 1971.

    Book  MATH  Google Scholar 

  55. H. Mathies and G. Strang, “The solution of nonlinear finite element equations,” Internat. J. Numer. Methods Engrg., 14(1979), 1613 – 1626.

    Article  MathSciNet  Google Scholar 

  56. M. Geradin and M. Hogge, “Quasi-Newton iteration in nonlinear structural dynamics,” Proc. SMiRT-5, Paper No. M7/1, Berlin, August 1979.

    Google Scholar 

  57. A.N. Konovalov, “Application of the method of splitting to the dynamic solution of problems of the theory of elasticity,” U.S.S.R. Comput. Math., 4(1964), 192 – 198.

    Article  Google Scholar 

  58. S.P. Frankel, “Convergence rates of iterative treatments of partial differential equations,” Math. Tables, Aids to Comput., 4(1950), 65 – 70.

    Article  MathSciNet  Google Scholar 

  59. J.S. Brew and D.M. Brotton, “Nonlinear structural analysis by dynamic relaxation,” Internat. J. Numer. Methods Engrg., 3(1971), 463 – 483.

    Article  Google Scholar 

  60. P.G. Underwood, “Dynamic relaxation,” in Computational Methods for Transient Dynamic Analysis (T. Belytschko and T.J.R. Hughes, eds.), North-Holland, Amsterdam, 1983, Chapter 5.

    Google Scholar 

  61. G.S. Patterson, “Large scale scientific computing: future directions,” Comput. Phys. Comm., 26(1982), 217 – 225.

    Article  MathSciNet  Google Scholar 

  62. H. Allik, J. Crawther, J. Goodhue, S. Moor, and R. Thomas, “Implementation of the finite element methods on the butterfly parallel processor,” BBN Lab. Inc., Cambrideg, MA, July 1985

    Google Scholar 

  63. G.A. Lyzenga, A. Raefsky, and B.H. Hager, “Finite elements and the method of conjugate gradient on a concurrent processor,” a CalTech Preprint, 1985.

    Google Scholar 

  64. B. Nour-Omid and K.C. Park, “Solving structural mechanics problems on the CalTech hypercube machine,” Comput. Methods Appl. Mech. Engrg., 61, (1981), 161 – 176.

    Article  Google Scholar 

  65. P. Lotstedt and L.R. Petzold, “Numerical solution of nonlinear differential Equations with Algebraic Constraints,” Sandia National Laboratories, Report SAND 83-8877, Livermore, CA, 1983.

    Google Scholar 

  66. R.A. Wehage and E.J. Haug, “Generalized coordinate partitioning for dimension reduction in analysis of constrained dynamic systems,” ASME J. Mech. Design, 104(1982), 247 – 255.

    Article  Google Scholar 

  67. P. Lötstedt, “On a penalty function method for the simulation of mechanical systems subject to constraints,” TRITA-NA-7919,1979, Royal Institute of Technology, Stockholm.

    Google Scholar 

  68. C. Fuehrer and O. Wallrapp, “A computer-oriented method for reducing linearized multibody system equations by incorporating constraints,” Comput. Methods Appl. Mech. Engrg., 46(1984), 169 – 175.

    Article  MATH  Google Scholar 

  69. P.E. Nikravesh, x in Computer Aided Analysis and Optimization of Mechanical Systems Dynamics(E.J. Haug, ed.), NATO ASI series, F9, Springer-Verlag, Berlin, 1984, pp. 351 – 367.

    Chapter  Google Scholar 

  70. K.C. Park, “Stabilization of computational procedures for constrained dynamical system: Formulation,” AIAA Paper No. AIAA-86-0926-CP, presented at the 27th SDM Conference, San Antonio, Texas, May 1986.

    Google Scholar 

  71. N. Kikuchi and J.T. Oden, “Contact problems in elastostatics,” in Finite Elements: Special Problems in Solid Mechanics( J.T. Oden and G. Carey, eds.), Prentice-Hall, Englewood Cliffs, NJ, 1984.

    Google Scholar 

  72. B. Nour-Omid and P. Wriggers, “Solution methods for contact problems,” Comput. Methods Appl. Mech. Engrg., 52(1983), 31 – 44.

    Google Scholar 

  73. J.T. Oden, “Exterior penalty methods for contact problems in elasticity,” in Nonlinear Finite Element Analysis in Structural Mechanics( W. Wunderlich, P. Stein, and K.J. Bathe, eds.), Springer-Verlag, Berlin, 1981.

    Google Scholar 

  74. T.J.R. Hughes, I. Levit, and J.M. Winget, “An element-by-element solution algorithm for problems of structural and solid mechanics,” Comput. Methods Appl. Mech. Engrg., 36 (1983), 223 – 239.

    Article  MathSciNet  Google Scholar 

  75. T. Belytschko, P. Smolinski, and W.-K. Liu, “Stability of multi-step partitioned integrators for first-order finite element systems,” Comput. Methods Appl. Mech. Engrg., 52(1985), 281 – 298.

    Article  MathSciNet  Google Scholar 

  76. M. Ortiz and B. Nour-Omid, “Unconditionally stable concurrent procedures for transient finite element analysis,” Comput. Methods Appl. Mech. Engrg. (1986), to appear.

    Google Scholar 

  77. N.F. Knight and W.J. Stroud, “Computational structural mechanics: A new activity at the NASA Langley Research Center,” NASA Tech. Mem. 87612, Hampton, VA, 1985.

    Google Scholar 

  78. C.G. Lotts (compiler), “Introduction to the CSM Testbed: NICE/SPAR,” NASA/ Langley Research Center, June 1986.

    Google Scholar 

  79. C.A. Felippa, “Architecture of a distributed analysis network for computational Mechanics,” Comput. & Structures, 13 (1981), 405–413.

    Article  Google Scholar 

  80. C.A. Felippa, “A command language for applied mechanics processors,” 1–3, LMSC-D78511, Lockheed Palo Research Laboratory, Palo Alto, CA, 1983.

    Google Scholar 

  81. C.A. Felippa and G.M. Stanley, “NICE: A utility architecture for computational mechanics,” in Finite Elements for Nonlinear Problems(P.G. Bergan, K.J. Bathe, and W. Wunderlich, eds.), Springer-Verlag, New York, 1986, pp. 447 - V463.

    Chapter  Google Scholar 

  82. T. Belytschko, “Transient analysis,” in Structural Mechanics Computer Programs(W. Pilkey et al. eds.), The University Press of Virginia, Charlottesville, 1974, pp. 255 – 276.

    Google Scholar 

  83. C.A. Felippa and K.C. Park, “Direct time integration methods in nonlinear structural dynamics,” Comput. Methods Appl. Mech. Engrg., 17/18(1979), 277 – 313.

    Article  Google Scholar 

  84. T.J.R. Hughes and T. Belytschko, “A précis of developments in computational methods for transient analysis,” J. Appl. Math. Mech., 50(1985), 1033 – 1041.

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1988 Springer Science+Business Media New York

About this paper

Cite this paper

Park, K.C. (1988). Transient Analysis Methods in Computational Dynamics. In: Dwoyer, D.L., Hussaini, M.Y., Voigt, R.G. (eds) Finite Elements. ICASE/NASA LaRC Series. Springer, New York, NY. https://doi.org/10.1007/978-1-4612-3786-0_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-3786-0_11

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4612-8350-8

  • Online ISBN: 978-1-4612-3786-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics