Skip to main content

The Microbial Degradation of 2,4-Dichlorophenoxyacetic Acid in Soil

  • Chapter

Part of the book series: Reviews of Environmental Contamination and Toxicology ((RECT,volume 101))

Abstract

The herbicide 2,4-dichlorophenoxyacetic acid (2,4-D) and the related 2,4,5-trichloro- and 2-chloro-4-methylphenoxyacetic acid (2,4,5-T and MCPA, respectively), are selectively highly toxic to most annual and perennial dicotyledonous species and relatively nontoxic to monocotyledonous plants (Loos 1975a). The present review summarizes mainly recent developments on the microbial degradation of 2,4-D in soil. Cheng and Lehmann (1985) defined degradation as the process whereby a herbicide, for example, is transformed structurally by photochemical, chemical, and biochemical means and is mineralized eventually to CO2, water, and salts. However, under field conditions, the herbicide concentration at the site of application can be reduced, in addition to degradation, by such transfer processes as adsorption, leaching, surface run-off, volatilization and plant uptake, which leave the herbicide molecule intact (Weber et al. 1973). Transfer processes should not be confused with degradation (Cheng and Lehmann 1985) and the term degradation should not be confused with dissipation, which is a collective term describing the disappearance of the herbicide from soil by several pathways (Wagenet and Rao 1985).

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Alexander M (1977) Introduction to soil microbiology. 2nd Ed. John Wiley & Sons, New York.

    Google Scholar 

  • Amonette J, O’Connor GA (1980) Nonionic surfactant effects on adsorption and degradation of 2,4-D. Soil Sci Soc Am J 44:540–544.

    CAS  Google Scholar 

  • Appleby AP (1985) Factors in examining fate of herbicides in soil with bioassays. Weed Sci 33 (Suppl 2):2–6.

    CAS  Google Scholar 

  • Ashton FM, Crafts AS (1981) Mode of action of herbicides, 2nd Ed. John Wiley & Sons, New York.

    Google Scholar 

  • Audus LJ (1949) The biological detoxication of 2:4-dichlorophenoxyacetic acid in soil. Plant Soil 2:31–36.

    CAS  Google Scholar 

  • Audus LJ (1960) Microbiological breakdown of herbicides in soils. In: Woodford EK and Sagar GR (eds) Herbicides and the soil. Blackwell, Oxford, pp 1–19.

    Google Scholar 

  • Audus LJ (1964) Herbicide behaviour in soil. II. Interactions with soil micro-organisms. In: Audus LJ (ed) The physiology and biochemistry of herbicides. Academic Press, London, pp 163–206.

    Google Scholar 

  • Babiuk LA, Paul EA (1970) The use of fluorescein isothiocyanate in the determination of the bacterial biomass of grassland soil. Can J Microbiol 16:57–62.

    PubMed  CAS  Google Scholar 

  • Baer EF, Gilden MM, Wienke CL, Mellitz MB (1971) Comparative efficiency of two enrichment and four plating media for isolation of Staphylococcus aureus. J Assoc Offic Anal Chemists 54:736–738.

    CAS  Google Scholar 

  • Bartha R, Pramer D (1965) Features of a flask and method for measuring the persistence and biological effects of pesticides in soil. Soil Sci 100:68–70.

    CAS  Google Scholar 

  • Bartlett R, James B (1980) Studying dried, stored soil samples - some pitfalls. Soil Sci Soc Am J 44:721–724.

    CAS  Google Scholar 

  • Bauer SR, Wood EM, Traxler RW (1979) Co-oxidation of 2,4-dichlorophenoxyacetate by Pseudomonas sp. Int Biodeterior Bull 15:53–56.

    CAS  Google Scholar 

  • Bellinck C, Batistic L, Mayaudon J (1979) Dégradation de ľacide 2,4-dichlorophenoxy-acétique dans les sols. Rev Écol Biol Sol 16:161–168.

    CAS  Google Scholar 

  • Boethling RS, Alexander M (1979) Effect of concentration of organic chemicals on their biodegradation by natural microbial communities. Applied Environ Microbiol 37:1211–1216.

    CAS  Google Scholar 

  • Bremner JM, Douglas LA (1971) Use of plastic films for aeration in soil incubation experiments. Soil Biol Biochem 3:289–296.

    CAS  Google Scholar 

  • Cheng HH, Lehmann RG (1985) Characterization of herbicide degradation under field conditions. Weed Sci 33 (Suppl 2):7–10.

    CAS  Google Scholar 

  • Cochran WG (1950) Estimation of bacterial densities by the “most probable number.” Biometrics 6:105–116.

    PubMed  CAS  Google Scholar 

  • Cochrane WP (1979) Application of chemical derivatisation techniques for pesticide analysis. J Chromatogr Sci 17:124–137.

    CAS  Google Scholar 

  • Connick WJ, Jr, Simoneaux JM (1982) Determination of (2,4-dichlorophenoxy)acetic acid and of 2,6-dichlorobenzonitrile in water by high-performance liquid chromatography. J Agric Food Chem 30:258–260.

    CAS  Google Scholar 

  • Crosby DG, Tutass HO (1966) Photodecomposition of 2,4-dichlorophenoxyacetic acid. J Agric Food Chem 14:596–599.

    CAS  Google Scholar 

  • Cullimore DR (1981) The enumeration of 2,4-D degraders in Sasketchewan soils. Weed Sci 29:440–443.

    CAS  Google Scholar 

  • Dagley S (1971) Catabolism of aromatic compounds by micro-organisms. Adv Microbial Physiol 6:1–46.

    CAS  Google Scholar 

  • De Man JC (1975) The probability of most probable numbers. Eur J Appl Microbiol 1:67–78.

    Google Scholar 

  • De Man JC (1977) MPN tables for more than one test. Eur J Appl Microbiol 4:307–316.

    Google Scholar 

  • De Man JC (1983) MPN tables, corrected. Eur J Appl Microbiol Biotechnol 17:301–305.

    Google Scholar 

  • Deschacht W (1983) A note on the use of a pocket-calculator to work out MPN-values. J Appl Bacteriol 55:499–500.

    Google Scholar 

  • DiGeronimo MJ, Nikaido M, Alexander M (1978) Most-probable-number technique for the enumeration of aromatic degraders in natural environments. Microbial Ecol 4:263–266.

    Google Scholar 

  • Don RH, Pemberton JM (1981) Properties of six pesticide degradation plasmids isolated from Alcaligenes paradoxus and Alcaligenes eutrophus. J Bacteriol 145:681–686.

    PubMed  CAS  Google Scholar 

  • Doxtader KG, Saleh-Rastine N (1974) Population dynamics of microorganisms capable of degrading 2,4-D. Agron Abstr 1974:127.

    Google Scholar 

  • Doyle RC, Kaufman DD, Burt GW (1978) Effect of dairy manure and sewage sludge on 14C-pesticide degradation in soil. J Agric Food Chem 26:987–989.

    CAS  Google Scholar 

  • Duah-Yentumi S, Kuwatsuka S (1982) Microbial degradation of benthiocarb, MCPA and 2,4-D herbicides in perfused soils amended with organic matter and chemical fertilizers. Soil Sci Plant Nutr 28:19–26.

    CAS  Google Scholar 

  • Eberle DO, Gerber HR (1976) Comparative studies of instrumental bioassay methods for the analysis of herbicide residues. Arch Environ Contam Toxicol 4:101–118.

    PubMed  CAS  Google Scholar 

  • Eisenhart C, Wilson PW (1943) Statistical methods and control in bacteriology. Bacteriol Reviews 7:57–137.

    CAS  Google Scholar 

  • Finney DJ (1950) The estimation of bacterial densities from dilution series. J Hygiene 3:26–35.

    Google Scholar 

  • Finney DJ (1978) Statistical method in biological assay, 3rd Ed. Charles Griffin & Co., London.

    Google Scholar 

  • Fisher PR, Appleton J, Pemberton JM (1978) Isolation and characterization of the pesticide-degrading plasmid, pJPl form Alcaligenes paradoxus. J Bacteriol 135:798–804.

    PubMed  CAS  Google Scholar 

  • Fisher RA (1922) On the mathematical foundations of theoretical statistics. Phil Trans Roy Soc London A 222:309–368.

    Google Scholar 

  • Fisher RA, Yates F (1963) Statistical tables for biological, agricultural and medical research, 6th Ed. Oliver and Boyd, Edinburgh.

    Google Scholar 

  • Fournier JC (1980) Enumeration of the soil micro-organisms able to degrade 2,4-D by metabolism or co-metabolism. Chemosphere 9:169–174.

    CAS  Google Scholar 

  • Fournier JC, Codaccioni P, Soulas G (1981) Soil adaptation to 2,4-D degradation in relation to the application rates and the metabolic behaviour of the degrading microflora. Chemosphere 10:977–984.

    CAS  Google Scholar 

  • Frehse H, Anderson JPE (1983) Pesticide residues in soil-problems between concept and concern. In: Miyamoto J and Kearney PC (eds) Pesticide chemistry: human welfare and the environment, vol. 4. Pergamon Press, Oxford, pp 23–32.

    Google Scholar 

  • Giolitti G, Cantoni C (1966) A medium for the isolation of staphylococci from food stuffs. J Appl Bacteriol 29:395–398.

    PubMed  CAS  Google Scholar 

  • Greaves MP, Davies HA, Marsh JAP, Wingfield GI (1976) Herbicides and soil microorganisms. CRC Crit Rev Microbiol 5:1–38.

    PubMed  CAS  Google Scholar 

  • Grover R (1973) The adsorptive behaviour of acid and ester forms of 2,4-D on soils. Weed Res 13:51–58.

    CAS  Google Scholar 

  • Grover R, Shewchuk SR, Cessna AJ, Smith AE, Hunter JH (1985) Fate of 2,4-D iso-octyl ester after application to a wheat field. J Environ Qual 14:203–210.

    CAS  Google Scholar 

  • Guth JA (1980) The study of transformations. In: Hance RJ (ed) Interaction between herbicides and the soil. Academic Press, London, pp 123–157.

    Google Scholar 

  • Haider K, Martin JP (1975) Decomposition of specifically carbon-14 labeled benzoic and cinnamic acid derivatives in soil. Soil Sci Soc Am Proc 39:657–662.

    CAS  Google Scholar 

  • Hamaker JW (1972) Decomposition: quantitative aspects. In: Goring CAI and Hamaker JW (eds) Organic chemicals in the soil environment, vol 1. Marcel Dekker, New York, pp 253–340.

    Google Scholar 

  • Hammond LC, Pritchett WL, Chew V (1958) Soil sampling in relation to soil heterogeneity. Soil Sci Soc Am Proc 22:548–552.

    CAS  Google Scholar 

  • Helling CS (1971) Pesticide mobility in soils II. Applications of soil thin-layer chromatography. Soil Sci Soc Am Proc 35:737–743.

    CAS  Google Scholar 

  • Horvath RS (1972) Microbial co-metabolism and the degradation of organic compounds in nature. Bacteriol Reviews 36:146–155.

    CAS  Google Scholar 

  • Horvath RS (1973) Enhancement of co-metabolism of chlorobenzoates by the co-substrate enrichment technique. Appl Microbiol 25:961–963.

    PubMed  CAS  Google Scholar 

  • Horvath RS, Dotzlaf JE, Kreger R (1975) Co-metabolism of m-chlorobenzoate by natural microbial populations grown under co-substrate enrichment conditions. Bull Environ Contam Toxicol 13:357–361.

    PubMed  CAS  Google Scholar 

  • Horvath RS, Flathman P (1976) Co-metabolism of fluorobenzoates by natural microbial populations. Appl Environ Microbiol 31:889–891.

    PubMed  CAS  Google Scholar 

  • Hurle K, Walker A (1980) Persistence and its prediction. In: Hance RJ (ed) Interactions between herbicides and the soil. Academic Press, London, pp 83–122.

    Google Scholar 

  • Hurley MA, Roscoe ME (1983) Automated statistical analysis of microbial enumeration by dilution series. J Appl Bacteriol 55:159–164.

    Google Scholar 

  • Kaufman DD, Kearney PC (1976) Microbial transformations in the soil. In: Audus LJ (ed) Herbicides: physiology, biochemistry, ecology, vol. 2. Academic Press, London, pp 29–64.

    Google Scholar 

  • Kilpi S, Backström V, Korhola M (1980) Degradation of 2-methyl-4-chlorophenoxyacetic acid (MCPA), 2,4-dichlorophenoxyacetic acid (2,4-D), benzoic acid and salicylic acid by Pseudomonas HV3. Microbiol Letters 8:177–182.

    CAS  Google Scholar 

  • Klingman GC, Ashton FM (1975) Weed science: principles and practices. John Wiley & Sons, New York.

    Google Scholar 

  • Koch AL (1981) Growth measurement. In: Gerhardt P, Murray RGE, Costilow RN, Nester EW, Wood WA, Krieg NR, and Phillips GB (eds) Manual of methods for general bacteriology, Am Soc Microbiol, Washington DC, pp 179–207.

    Google Scholar 

  • Koch AL (1982) Estimation of the most probable number with a programmable pocket calculator. Appl Environ Microbiol 43:488–490.

    PubMed  CAS  Google Scholar 

  • Kunc F, Rybarova J (1983a) Mineralization of carbon atoms of 14C-2,4-D side chain and degradation ability of bacteria in soil. Soil Biol Biochem 15:141–144.

    CAS  Google Scholar 

  • Kunc F, Rybarova J (1983b) Effect of glucose on the amount of bacteria mineralizing 2,4-dichlorophenoxyacetic acid in soil. Folia Microbiol 28:54–56.

    CAS  Google Scholar 

  • Kunc F, Rybarova J (1984) Mineralization of 2,4-dichlorophenoxyacetic acid in soil previously enriched with organic substrates. Folia Microbiol 29:156–161.

    CAS  Google Scholar 

  • Kunc F, Rybarova J, Lasik J (1984) Mineralization of 2,4-dichlorophenoxyacetic acid in soil simultaneously enriched with saccharides. Folia Microbiol 29:148–155.

    CAS  Google Scholar 

  • Kuwatsuka S (1983) Fate of herbicides in flooded paddy soils. In: Miyamoto J and Kearney PC (eds) Pesticide chemistry: human welfare and the environment, vol. 2. Pergamon Press, Elmsford, NY, pp 347–354.

    Google Scholar 

  • Lavy TL, Roeth FW, Fenster CR (1973) Degradation of 2,4-D and atrazine at three soil depths in the field. J Environ Qual 2:132–137.

    CAS  Google Scholar 

  • Lay MM, Ilnicki RD (1975) Effect of soil storage on propanil degradation. Weed Res 15:63–66.

    CAS  Google Scholar 

  • Lehmicke LG, Williams RT, Crawford RL (1979) 14C-most-probable-number method for enumeration of active heterotrophic microorganisms in natural waters. Appl Environ Microbiol 38:644–649.

    PubMed  CAS  Google Scholar 

  • Loos MA (1975a) Phenoxyalkanoic acids. In: Kearney PC and Kaufman DD (eds) Herbicides: chemistry, degradation, and mode of action, vol. 1. Marcel Dekker, New York, pp 1–128.

    Google Scholar 

  • Loos MA (1975b) Indicator media for microorganisms degrading chlorinated pesticides. Can J Microbiol 21:104–107.

    PubMed  CAS  Google Scholar 

  • Loos MA, Konston A, Kearney PC (1980) Inexpensive soil flask for 14C-pesticide degradation studies. Soil Biol Biochem 12:583–585.

    CAS  Google Scholar 

  • Loos MA, Schlosser IF, Mapham WR (1979) Phenoxy herbicide degradation in soils: quantitative studies of 2,4-D- and MCPA-degrading microbial populations. Soil Biol Biochem 11:377–385.

    CAS  Google Scholar 

  • MacDonell MT (1983) Rapid estimation of most probable number with a hand-held calculator. Can J Microbiol 29:621–623.

    Google Scholar 

  • MacVicar CN, De Villiers JM, Loxton RF, Verster E, Lambrechts JJN, Merryweather FR, Le Roux J, Van Rooyen TH, Von Harmse HJ (1977) Soil classification: a binomial system for South Africa. Dept. Agricultural Technical Services, Pretoria, Republic of South Africa.

    Google Scholar 

  • Marshall KC, Whiteside JS, Alexander M (1960) Problems in the use of agar for the enumeration of soil microorganisms. Soil Sci Soc Am Proc 24:61–62.

    Google Scholar 

  • Martin JP, Haider K (1976) Decomposition of specifically carbon-14-labelled ferulic acid: free and linked into model humic acid-type polymers. Soil Sci Soc Am Proc 40:377–380.

    CAS  Google Scholar 

  • McCall PJ, Vrona SA, Kelly SS (1981) Fate of uniformly carbon-14-ring labeled 2,4,5-trichlorophenoxyacetic acid and 2,4-dichlorophenoxyacetic acid. J Agric Food Chem 29:100–107.

    CAS  Google Scholar 

  • Meiklejohn J (1957) Numbers of bacteria and actinomycetes in a Kenya soil. J Soil Sci 8:240–247.

    Google Scholar 

  • Mikesell MD, Boyd SA (1985) Reductive dechlorination of the pesticides 2,4-D, 2,4,5-T and pentachlorophenol in anaerobic sludges. J Environ Qual 14:337–340.

    CAS  Google Scholar 

  • Moran PAP (1954a) The dilution assay of viruses. J Hygiene 52:189–193.

    CAS  Google Scholar 

  • Moran PAP (1954b) The dilution assay of viruses. II. J Hygiene 52:444–446.

    CAS  Google Scholar 

  • Moran PAP (1958) Another test for heterogeneity of host resistance in dilution assays. J Hygiene 56:319–322.

    CAS  Google Scholar 

  • Moreale A, Van Bladel R (1980) Behaviour of 2,4-D in Belgian soils. J Environ Qual 9:627–633.

    CAS  Google Scholar 

  • Muzik TJ (1976) Influence of environmental factors on toxicity to plants. In: Audus LJ (ed) Herbicides: physiology, biochemistry, ecology, vol. 2. Academic Press, London, pp 203–247.

    Google Scholar 

  • Nash RG (1983) Determining environmental fate of pesticides with microagroecosystems. Residue Reviews 85:199–215.

    CAS  Google Scholar 

  • Nash RG, Beall ML, Jr (1980) Distribution of silvex, 2,4-D, and TCDD applied to turf in chambers and field plots. J Agric Food Chem 28:614–623.

    CAS  Google Scholar 

  • Nelder JA, Wedderburn RWM (1972) Generalized linear models. J Roy Stat Soc A 135:370–384.

    Google Scholar 

  • Neyman J (1941) Fiducial argument and the theory of confidence intervals. Biometrika 32:128–150.

    Google Scholar 

  • Norman RL, Kempe LL (1960) Electronic computer solution for the MPN equation used in the determination of bacterial populations. J Biochem Microbiol Technol Engr 2:157–163

    Google Scholar 

  • O’Connor GA, Fairbanks BC, Doyle EA (1981) Effects of sewage sludge on phenoxy herbicide adsorption and degradation in soils. J Environ Qual 10:510–515.

    Google Scholar 

  • Ogle RE, Warren GR (1954) Fate and activity of herbicides in soils. Weeds 3:257–273.

    Google Scholar 

  • Ogram AV, Jessup RE, Ou L-T, Rao PSC (1985) Effects of (2,4-dichlorophenoxy)acetic acid in soils. Appl Environ Microbiol 49:582–587.

    PubMed  CAS  Google Scholar 

  • Orchard VA, Cook FJ (1983) Relationship between soil respiration and soil moisture. Soil Biol Biochem 15:447–453.

    Google Scholar 

  • Ou L-T (1984) 2,4-D degradation and 2,4-D degrading microorganisms in soils. Soil Sci 137:100–107.

    CAS  Google Scholar 

  • Ou L-T, Davidson JM, Rothwell DF (1978a) Response of soil microflora to high 2,4-D applications. Soil Biol Biochem 10:443–445.

    CAS  Google Scholar 

  • Ou L-T, Rothwell DF, Wheeler WB, Davidson JM (1978b) The effect of high 2,4-D concentrations on degradation and carbon dioxide evolution in soils. J Environ Qual 7:241–246.

    CAS  Google Scholar 

  • Pardee AB (1962) The synthesis of enzymes. In: Gunsalus IC and Stanier RY (eds) The bacteria, vol. 3. Academic Press, New York, pp 577–630.

    Google Scholar 

  • Park D (1976) Carbon and nitrogen levels as factors influencing fungal decomposers. In: Anderson JM and Macfadyen N (eds) The role of terrestrial and aquatic organisms in decomposition processes. 17th Symp. British Ecological Society. Blackwell, Oxford, pp 41–59.

    Google Scholar 

  • Parker LW (1979) The kinetics of the microbial decomposition of 2,4-D in soil. Ph.D. thesis. Colorado State University, Fort Collins.

    Google Scholar 

  • Parker LW, Doxtader KG (1982) Kinetics of microbial decomposition of 2,4-D in soil: effects of herbicide concentration. J Environ Qual 11:679–684.

    CAS  Google Scholar 

  • Parker LW, Doxtader KG (1983) Kinetics of the microbial degradation of 2,4-D in soil: effects of temperature and moisture. J Environ Qual 12:553–558.

    Google Scholar 

  • Patterson JT (1973) Comparison of plating and most probable number techniques for the isolation of staphylococci from foods. J Appl Bacteriol 36:273–277.

    PubMed  CAS  Google Scholar 

  • Paul EA, Voroney RP (1980) Nutrient energy flows through soil microbial biomass. In: Ellwóod DC, Hedger JN, Latham MJ, Lynch JM, and Slater JH (eds) Contemporary microbial ecology. Academic Press, London, pp 219–237.

    Google Scholar 

  • Pemberton JM (1979) Pesticide degradation plasmids: a biological answer to environmental pollution by phenoxy herbicides. Ambio 8:202–205.

    CAS  Google Scholar 

  • Pemberton JM, Fisher PR (1977) 2,4-D plasmids and persistence. Nature 268:732–733.

    PubMed  CAS  Google Scholar 

  • Pfaender FK, Alexander M (1973) Effect of nutrient additions on the apparent cometabolism of DDT. J Agric Food Chem 21:397–401.

    PubMed  CAS  Google Scholar 

  • Pionke HB, Chesters G (1973) Pesticide-sediment-water interactions. J Environ Qual 2:29–45.

    CAS  Google Scholar 

  • Plumb TR, Norris LA, Montgomery ML (1977) Persistence of 2,4-D and 2,4,5-T in Chaparral soil and vegetation. Bull Environ Contam Toxicol 17:1–8.

    PubMed  CAS  Google Scholar 

  • Pramer D, Bartha R (1972) Preparation and processing of soil samples for biodegradation studies. Environ Letters 2:217–224.

    Google Scholar 

  • Rann DL, Cain RB (1969) The regulation of the enzymes of aromatic ring fission in an actinomycete. Biochem J 114:77.

    Google Scholar 

  • Rao PSC, Wagenet RJ (1985) Spatial variability of pesticides in field soils: methods for data analysis and consequences. Weed Sci 33 (Suppl 2): 18–24.

    CAS  Google Scholar 

  • Roseboom H, Greve PA (1983) Pre-column derivatization for the high performance liquid chromatographic determination of nitrophenol and phenoxy carboxylic acid pesticides. In: Miyamoto J and Kearney PC (eds) Pesticide chemistry: human welfare and the environment, vol. 4. Pergamon Press, Elmsford, NY, pp 111–116.

    Google Scholar 

  • Rosenberg A, Alexander M (1980) 2,4,5-Trichlorophenoxyacetic acid (2,4,5-T) decomposition in tropical soil and its co-metabolism in vitro. J Agric Food Chem 28:705–709.

    CAS  Google Scholar 

  • Ross DJ, Tate KR, Cairns A, Meyrick KF (1980a) Influence of storage on soil microbial biomass estimated by three biochemical procedures. Soil Biol Biochem 12:369–374.

    Google Scholar 

  • Ross DJ, Tate KR, Cairns A, Pansier EA (1980b) Microbial biomass estimations in soils from tussock grasslands by three biochemical procedures. Soil Biol Biochem 12:375–383.

    Google Scholar 

  • Rowe R, Todd R, Waide J (1977) Microtechnique for most-probable-number analysis. Appl Environ Microbiol 33:675–680.

    PubMed  CAS  Google Scholar 

  • Russek E, Colwell RR (1983) Computation of most probable numbers. Appl Environ Microbiol 45:1646–1650.

    PubMed  CAS  Google Scholar 

  • Salonius PO (1978) Effects of mixing and various temperature regimes on the respiration of fresh and air-dried coniferous raw humus materials. Soil Biol Biochem 10:479–482.

    CAS  Google Scholar 

  • Salonius PO (1983) Effects of air drying on the respiration of forest soil microbial populations. Soil Biol Biochem 15:199–203.

    Google Scholar 

  • Sandmann ERIC (1974) Aromatic metabolism by phenoxy herbicide-degrading soil bacteria. M.Sc. thesis. University of Natal, Pietermaritzburg, Republic of South Africa.

    Google Scholar 

  • Sandmann ERIC (1986) Degradation of 2,4-D in sugarcane and African clover soils, and bromacil and dimethoate in citrus soils: microbiological and chemical studies. Ph.D. thesis. University of Stellenbosch, Stellenbosch, Republic of South Africa.

    Google Scholar 

  • Sandmann ERIC, Loos MA (1984) Enumeration of 2,4-D-degrading microorganisms in soils and crop plant rhizospheres using indicator media; high populations associated with sugarcane (Saccharum officinarum). Chemosphere 13:1073–1084.

    CAS  Google Scholar 

  • Santelmann PW (1977) Herbicide bioassay. In: Truelove B (ed) Research methods in weed science, 2nd Ed. Southern Weed Sci Soc, pp 79–87.

    Google Scholar 

  • Sattar MA, Paasivirta J (1980) Fate of chlorophenoxyacetic acids in acid soil. Chemosphere 9:745–752.

    CAS  Google Scholar 

  • Seibert K, Führ F, Mittelstaedt W (1982) Experiments on the influence of roots and soils on 2,4-D degradation. Landwirtsch Forsch 35:5–13.

    Google Scholar 

  • Simon-Sylvestre G, Fournier J-C (1979) Effects of pesticides on soil microflora. Adv Agron 31:1–92.

    CAS  Google Scholar 

  • Smith AE (1976) Use of acetonitrile for the extraction of herbicide residues from soils. J Chromatogr 129:309–314.

    PubMed  CAS  Google Scholar 

  • Smith AE (1978) Relative persistence of di- and tri-chlorophenoxyalkanoic acid herbicides in Saskatchewan soils. Weed Res 18:275–279.

    CAS  Google Scholar 

  • Smith AE (1979) Soil persistence experiments with (14C)-2,4-D in herbicidal mixtures, and field persistence studies with triallate and trifluralin both singly and combined. Weed Res 19:165–170.

    CAS  Google Scholar 

  • Smith AE (1980) Persistence studies with (14C)-2,4-D in soils previously treated with herbicides and pesticides. Weed Res 20:355–359.

    CAS  Google Scholar 

  • Smith AE, Hayden BJ (1976) Field persistence studies with eight herbicides commonly used in Saskatchewan. Can J Plant Sci 56:769–771.

    CAS  Google Scholar 

  • Smith AE, Muir DCG (1980) Determination of extractable and non-extractable radioactivity from prairie soils treated with carboxyl- and ring-labelled (14C)-2,4-D. Weed Res 20:123–129.

    CAS  Google Scholar 

  • Smith AE, Muir DCG (1984) Determination of extractable and non-extractable radioactivity from small field plots 45 and 95 weeks after treatment with [14C]dicamba, (2,4-dichloro[14C]phenoxy)acetic acid, [14C]triallate, and [14C]trifluralin. J Agric Food Chem 32:588–593.

    CAS  Google Scholar 

  • Soulas G (1982) Mathematical model for microbial degradation of pesticides in the soil. Soil Biol Biochem 14:107–115.

    CAS  Google Scholar 

  • Soulas G, Codaccioni P, Fournier JC (1983) Effect of cross-treatment on the subsequent breakdown of 2,4-D, MCPA, and 2,4,5-T in the soil. Behaviour of the degrading microbial populations. Chemosphere 12:1101–1106.

    CAS  Google Scholar 

  • Soulas G, Fournier JC (1981) Soil aggregate as a natural sampling unit for studying behaviour of microorganisms in the soil: application to pesticide degrading microorganisms. Chemosphere 10:431–440.

    CAS  Google Scholar 

  • Stanier RY, Ornston LN (1973) The β-ketoadipate pathway. Adv Microbial Physiol 9:89–151.

    CAS  Google Scholar 

  • Stevens WL (1958) Dilution series: a statistical test of technique. J Roy Stat Soc B 20:205–214.

    Google Scholar 

  • Stevenson FJ (1972) Organic matter reactions involving herbicides in soil. J Environ Qual 1:333–343.

    CAS  Google Scholar 

  • Stevenson LH (1978) A case for bacterial dormancy in aquatic systems. Microbial Ecol 4:127–133.

    Google Scholar 

  • Stewart DKR, Gaul SO (1977) Persistence of 2,4-D, 2,4,5-T and dicamba in a dykeland soil. Bull Environ Contam Toxicol 18:210–218.

    PubMed  CAS  Google Scholar 

  • Storrier RR (1966) The pre-treatment and storage of soil samples for nitrogen analyses. J Austr Inst Agric Sci 32:106–113.

    CAS  Google Scholar 

  • Stott DE, Martin JP, Focht DD, Haider K (1983) Biodegradation, stabilization in humus, and incorporation into soil biomass of 2,4-D and chlorocatechol carbons. Soil Sci Soc Am Proc 47:66–70.

    CAS  Google Scholar 

  • Tabor H, Tabor CW, Hafner EW (1976) Convenient method for detecting 14CO2 in multiple samples: application to rapid screening for mutants. J Bacteriol 128:485–486.

    PubMed  CAS  Google Scholar 

  • Taylor J (1962) The estimation of numbers of bacteria in tenfold dilution series. J Appl Bacteriol 25:54–61.

    Google Scholar 

  • Thompson DG, Stephenson GR, Solomon KR, Skepasts AV (1984) Persistence of (2,4-dichlorophenoxy)acetic acid and 2-(2,4-dichlorophenoxy)propionic acid in agricultural and forest soils of northern and southern Ontario. J Agric Food Chem 32:578–581.

    CAS  Google Scholar 

  • Torstensson L (1980) Role of microorganisms in decomposition. In: Hance RJ (ed) Interactions between herbicides and the soil. Academic Press, London, pp 159–178.

    Google Scholar 

  • Torstensson NTL, Stark J, Göransson B (1975) The effect of repeated applications of 2,4-D and MCPA on their breakdown in soil. Weed Res 15:159–164.

    CAS  Google Scholar 

  • Wagenet RJ, Rao PSC (1985) Basic concepts of modeling pesticide fate in the crop root zone. Weed Sci 33 (Suppl. 2):25–32.

    CAS  Google Scholar 

  • Waid JS (1972) The possible importance of transfer factors in the bacterial degradation of herbicides in natural ecosystems. Residue Reviews 44:65–71.

    PubMed  CAS  Google Scholar 

  • Watson JR, Posner AM, Quirk JP (1973) Adsorption of the herbicide 2,4-D on goethite. J Soil Sci 24:503–511.

    CAS  Google Scholar 

  • Weber JB (1977) Soil properties, herbicide sorption, and model soil systems. In: Truelove B (ed) Research methods in weed science, 2nd Ed. Southern Weed Sci Soc, pp 59–72.

    Google Scholar 

  • Weber JB, Monaco TJ, Worsham AD (1973) What happens to herbicides in the environment? Weeds Today 4:16–17, 22.

    Google Scholar 

  • Wiese AF, Davis RG (1964) Herbicide movement in soil with various amounts of water. Weeds 12:101–103.

    Google Scholar 

  • Wilson RG, Jr, Cheng HH (1976) Breakdown and movement of 2,4-D in the soil under field conditions. Weed Sci 24:461–466.

    CAS  Google Scholar 

  • Wilson RG, Jr, Cheng HH (1978) Fate of 2,4-D in a Naff silt loam soil. J Environ Qual 7:281–286.

    CAS  Google Scholar 

  • Wolf DC, Martin JP (1976) Decomposition of fungal mycelia and humic-type polymers containing carbon-14 from ring and side-chain labeled 2,4-D and chlorpropham. Soil Sci Soc Am J 40:700–704.

    CAS  Google Scholar 

  • Woodward RL (1957) How probable is the most probable number? J Am Water Works Assoc 49:1060–1068.

    Google Scholar 

  • Yoshida T, Castro TF (1975) Degradation of 2,4-D, 2,4,5-T and picloram in two Philippine soils. Soil Sci Plant Nutr 21:397–404.

    CAS  Google Scholar 

  • Young AL (1980) Methods of detection and analysis. In: Bovey RW and Young AL (eds) The science of 2,4,5-T and associated phenoxy herbicides. John Wiley & Sons, New York, pp 239–300.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1988 Springer-Verlag New York Inc.

About this chapter

Cite this chapter

Sandmann, E.R.I.C., Loos, M.A., van Dyk, L.P. (1988). The Microbial Degradation of 2,4-Dichlorophenoxyacetic Acid in Soil. In: Ware, G.W. (eds) Reviews of Environmental Contamination and Toxicology. Reviews of Environmental Contamination and Toxicology, vol 101. Springer, New York, NY. https://doi.org/10.1007/978-1-4612-3770-9_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-3770-9_1

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4612-8342-3

  • Online ISBN: 978-1-4612-3770-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics