Bending of Plates

  • Phillip L. Gould

Abstract

The equilibrium equations for initially flat plates are stated as equations (3.25a-e); the strain-displacement relations are given by equations (5.54) or, with transverse shearing strains suppressed, as equations (5.55). Taken together with the stress resultant-strain relationships in the form of equation (6.10), the requisite boundary conditions discussed in section 6.2, and specifically the Kirchhoff conditions equations (6.25) and (6.27), the elements of a quite general plate theory are available and substantiated.

Keywords

Anisotropy Expense Sine Tated Dinates 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    R. Szilard, Theory and Analysis of Plates, Prentice-Hall, Inc., Englewood Cliffs, NJ, 1974, p. 36.MATHGoogle Scholar
  2. 2.
    M. Filonenko-Borodich, Theory of Elasticity, [trans, from Russian, (New York: Dover Publications), pp. 260–268].Google Scholar
  3. 3.
    S. Timoshenko, History of the Strength of Materials ( New York: McGraw-Hill, 1953 ), pp. 119–122.Google Scholar
  4. 4.
    S. Timoshenko, and S. Woinowsky-Krieger, Theory of Plates and Shells, 2nd ed., ( New York: McGraw-Hill, 1959 ), p. 92–97.Google Scholar
  5. 5.
    S. Timoshenko and J. N. Goodier, Theory of Elasticity, 2nd ed., ( New York: McGraw-Hill, 1951 ), pp. 316–317.MATHGoogle Scholar
  6. 6.
    S. Timoshenko, History of the Strength of Materials, pp. 333–340.Google Scholar
  7. 7.
    A Nadai, Die Elastichen Platten, ( Berlin: Springer-Verlag, 1925 ), p. 42.Google Scholar
  8. 8.
    S. Timoshenko, History of the Strength of Materials, pp. 110–113.Google Scholar
  9. 9.
    S. Timoshenko and W. Woinowsky-Krieger, Theory of Plates and Shells, pp. 113–135.Google Scholar
  10. 10.
    R. Courant and D. Hilbert, Methods of Mathematical Physics, Vol. I, (New York: Interscience Publishers, 1966 ), pp. 351–396.Google Scholar
  11. 11.
    Manual of Steel Construction, 8th ed., (New York: American Institute of Steel Construction, 1980), pp. 2.114–2.125.Google Scholar
  12. 12.
    S. Timoshenko and S. Woinowsky-Krieger, Theory of Plates and Shells, pp. 136–162.Google Scholar
  13. 13.
    Ibid., chap. 6.Google Scholar
  14. 14.
    Ibid., chap. 7.Google Scholar
  15. 15.
    K. Kiattikomol, L. M. Keer, and J. Dundurs, “Application of Dual Series to Rectangular Plates,” Journal of the Engineering Mechanics Division, ASCE, vol. 100, no. EM 2, Proc. Paper 10486, April 1974, pp. 433–444.Google Scholar
  16. 16.
    R. Szilard, Theory and Analysis of Plates, pp. 650-673.Google Scholar
  17. 17.
    S. Timoshenko and S. Woinowsky-Krieger, Theory of Plates and Shells, pp. 58–62.Google Scholar
  18. 18.
    R. Szilard, Theory and Analysis of Plates, pp. 613–649.Google Scholar
  19. 19.
    S. Timoshenko and S. Woinowsky-Krieger, Theory of Plates and Shells, pp. 282–293.Google Scholar
  20. 20.
    J. H. Michell, “On the Flexure of Circular Plates”, Proc. London Math.Soc., 34, 1902, pp. 223–228.MATHCrossRefGoogle Scholar
  21. 21.
    N. J. Hoff, The Analysis of Structures ( New York: Wiley, 1956 ), pp. 373–377.MATHGoogle Scholar
  22. 22.
    S. Timoshenko and S. Woinoiwsky-Krieger, Theory of Plates and Shells, pp. 313–319.Google Scholar
  23. 23.
    Ibid., pp. 310–313.Google Scholar
  24. 24.
    R. Szilard, Theory and Analysis of Plates, pp. 126–129.Google Scholar
  25. 25.
    S. Timoshenko and S. Woinowsky-Krieger, Theory of Plates and Shells, pp. 197–205.Google Scholar
  26. 26.
    M. J. Forray, Variational Calculus in Science and Engineering ( New York: McGraw-Hill, 1968 ), pp. 163–164.MATHGoogle Scholar
  27. 27.
    S. Timoshenko and S. Woinowsky-Krieger, Theory of Plates and Shells, pp. 173–179.Google Scholar
  28. 28.
    H. D. Conway, “A Levy-type Solution for a Rectangular Plate of Variable Thickness,” J. of Applied Mechanics, ASME, Vol. 2J, June 1958, pp. 297–308.Google Scholar
  29. 29.
    S. Timoshenko and S. Woinowsky-Krieger, Theory of Plates and Shells, pp. 298–308.Google Scholar
  30. 30.
    R. Szilard, Theory and Analysis of Plates, pp. 130-136.Google Scholar
  31. 31.
    S. Timoshenko and S. Woinowsky-Krieger, Theory of Plates and Shells, pp. 366–369.Google Scholar
  32. 32.
    Ibid., pp. 390–394.Google Scholar
  33. 33.
    K. S. Pister and S. B. Dong, “Elastic Bending of Layered Plates,” Journal of the Engineering Mechanics Division, ASCE, Vol. 84, No. 10, October 1959, pp. 1–10.Google Scholar
  34. 34.
    E. Reissner, “Finite Deflections of Sandwich Plates,” Proc. of the First U S National Congress of Applied Mechanics, ASME, New York, 1952.Google Scholar
  35. 35.
    E. Reissner, “Effect of Shear Deformation on Bending of Elastic Plates”, Journal of Applied Mechanics, ASME, vol. 12, no. 55, 1947, pp. A69–A77.MathSciNetGoogle Scholar
  36. 36.
    E. Reissner, “On Bending of Elastic Plates,” Quarterly of Applied Mechanics, vol. 5, 1947, pp. 55–68.MathSciNetMATHGoogle Scholar
  37. 37.
    E. Green, “On Reissner’s Theory of Bending of Elastic Plates,” Quarterly of Applied Mathematics, vol. 7, 1949, pp. 223 - 228.MathSciNetMATHGoogle Scholar
  38. 38.
    J. N. Reddy, Energy and Variational Methods in Applied Mechanics ( New York: Wiley, 1984 ), pp. 354–388.MATHGoogle Scholar
  39. 39.
    S. Timoshenko and S. Woinowsky-Krieger, Theory of Plates and Shells, pp. 165–173.Google Scholar
  40. 40.
    C. S. Desai and J. F. Abel, Introduction to the Finite Element Method (New York: Van Nostrand-Reinhold, 1972 ), pp. 80–82; 178–181.MATHGoogle Scholar
  41. 41.
    L. J. Brombolich and P. L. Gould, “A High-Precision Curved Shell Finite Element,” AIAA Journal, vol. 10, no. 6, June 1972, pp. 727–728.CrossRefGoogle Scholar
  42. 42.
    D. Yitzhaki, Prismatic and Cylindrical Shell Roofs (Haifa, Israel: Haifa Science Publishing, 1958 ).Google Scholar
  43. 43.
    H. Simpson, “Design of Folded Plate Roofs,” Journal of the Structural Division, ASCE, vol. 84, no. 1, January 1958, pp. 1–21.Google Scholar
  44. 44.
    D. P. Billington, Thin Shell Concrete Structures (New York: McGraw-Hill, 1965), chaps. 8 and 9.Google Scholar
  45. 45.
    M. Pultar, “Foundations of Folded Plate Theories,” IASS International Colloquium on the Progress of Shell Structures in the Last 10 Years and Its Future Development, Session VI, Madrid, Spain, September-October 1969, pp. 1–16.Google Scholar
  46. 46.
    J. E. Goldberg and J. L. Leve, “Theory of Prismatic Folded Plates,” Memoirs, IABSE, vol. 17, 1957, p. 59.Google Scholar
  47. 47.
    V. A. Pulmano and S. L. Lee, “Prismatic Shells with Intermediate Columns,” Journal of the Structural Division, ASCE, vol. 91, no. ST6, December 1965, pp. 215–237.Google Scholar
  48. 48.
    M. Pultar, D. B. Billington, and J. Riera, “Folded Plates Continuous over Flexible Supports,” Journal of the Structural Division, ASCE, vol. 93, no. ST5, October 1967, pp. 253–277.Google Scholar
  49. 49.
    Phase I Report of the Task Committee on Folded Plate Construction, Journal of the Structural Division, ASCE, vol. 89, no. ST6, December 1963, pp. 365-406.Google Scholar
  50. 50.
    S. Timoshenko and S. Woinowsky-Krieger, Theory of Plates and Shells, pp. 380–387.Google Scholar
  51. 51.
    D. O. Brush and B. O. Almroth, Buckling of Bars, Plates and Shells (New York: McGraw-Hill, 1975), pp. 94–112.MATHGoogle Scholar
  52. 52.
    Y. C. Fung, Foundations of Solid Mechanics (Englewood Cliffs, NJ: Prentice-Hall, 1965), pp. 463–470.Google Scholar
  53. 53.
    S. Timoshenko and S. Woinowsky-Krieger, Theory of Plates and Shells chap. 1.Google Scholar
  54. 54.
    Ibid., pp. 421–428Google Scholar
  55. 55.
    Ibid., pp. 396–415Google Scholar

Copyright information

© Springer-Verlag New York Inc. 1988

Authors and Affiliations

  • Phillip L. Gould
    • 1
  1. 1.Department of Civil EngineeringWashington UniversitySt. LouisUSA

Personalised recommendations