Skip to main content

Zooplankton: Scales of Biological and Physical Events

  • Chapter
Marine Organisms as Indicators

Abstract

The way in which physical and biological events interact to control the distribution and abundance of oceanic organisms has been reviewed by a number of authors (e.g., Angel 1984, Mackas et al. 1985, Tett and Edwards 1984, Horne and Platt 1984, Denman and Powell 1984). Legendre and Demers (1984) have also surveyed the recent literature and pointed out that most studies:

“…recognize hydrodynamics as the driving force of aquatic ecosystems, so that the various physical, chemical, and biological factors of the environment are considered as the proximal agents through which hydrodynamic variability is transmitted to living organisms.”

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Alldredge, A.L. 1982. Aggregation of spawning appendicularians in surfacewindrows. Bull. Mar. Sci. 32: 250–254.

    Google Scholar 

  • Alldredge, A.L. and W.M. Hamner. 1980. Recurring aggregation of zooplankton by a tidal current. Est. Coastal Mar. Sci. 10: 31–37.

    Article  Google Scholar 

  • Alldredge, A.L., B.H. Robison, A. Fleminger, J.J. Torres, J.M. King, and W.M. Hamner. 1984. Direct sampling and in situ observation of a persistent copepod aggregation in the mesopelagic zone of the Santa Barbara Basin. Mar. Biol. 80: 75–81.

    Article  Google Scholar 

  • Anderson, N.R. and B.J. Zahuranec, eds. 1977. Oceanic Sound Scattering Prediction. Plenum Press, New York, 859 pp.

    Google Scholar 

  • Anderson, O.R. 1983. Radiolaria. Springer-Verlag, New York, 355 pp.

    Google Scholar 

  • Angel, M.V. 1977. Windows into a sea of confusion: sampling limitations to the measurement of ecological parameters in oceanic mid-water environments. In Oceanic Sound Scattering Prediction. N.R. Anderson and B.J. Zahuranec, eds., pp. 2171–248. Plenum Press, New York, 859 pp.

    Google Scholar 

  • Angel, M.V. 1984. Deep-water biological processes in the northwest region of the Indian Ocean. Deep-Sea Res. 31: 935–950.

    Article  Google Scholar 

  • Bailey, K.M. 1981. Larval transport and recruitment of Pacific Hake Merluccius productus. Mar. Ecol. Prog. Ser. 6: 1–9.

    Article  Google Scholar 

  • Bakun, A. and R.H. Parrish. 1982. Turbulence, transport, and pelagic fish in the California and Peru Current systems. CalCOFI Rep. 23: 99–112.

    Google Scholar 

  • Båmstedt, U. and A. Ervik. 1984. Local variations in size and activity among Calanus finmarchicus and Metridia longa (Copepoda, Calanoida) overwintering on the west coast of Norway. J. Plankton Res. 6: 843–857.

    Article  Google Scholar 

  • Barber, R.T. and R.L. Smith. 1981. Coastal upwelling systems. In The Analysis of Marine Ecosystems, A.R. Longhurst, ed., pp. 31–68. Academic Press, London, 742 pp.

    Google Scholar 

  • Binet, D. 1979. Le zooplancton du plateau continental ivoirien. Essai de sythèse écologique. Oceanol. Acta 2: 397–410.

    Google Scholar 

  • Blanton, J.O., J.A. Yoder, L.P. Atkinson, T.N. Lee, C.R. McClain, D.W. Men-zel, G.A. Paffenhofer, L.J. Pietrafesa, L.R. Pomeroy, and H.L. Windom. 1984. A multidisciplinary oceanography program on the southeastern U.S. continental shelf. EOS 65: 1202–1203.

    Google Scholar 

  • Boltovskoy, D. 1986. Biogeography of the southwestern Atlantic: overview, current problems and prospects. In Pelagic biogeography. S. van der Spoel, A. Pierrot-Bults, B. Zahuranec, and R. Johnson, eds., pp. 14–24. UNESCO, Paris, 295 pp.

    Google Scholar 

  • Boltovskoy, E. and R. Wright, eds. 1976. Recent Foraminifera. Junk, The Hague, 515 pp.

    Google Scholar 

  • Boucher, J. 1984. Localization of zooplankton populations in the Ligurian marine front: role of ontogenic migration. Deep-Sea Res. 31: 469–484.

    Article  Google Scholar 

  • Boyd, S.H., P.H. Wiebe, and J.L. Cox. 1978. Limits of Nematoscelis megalops in the Northwestern Atlantic in relation to Gulf Stream cold core rings. II. Physiological and biochemical effects of expatriation. J. Mar. Res. 36: 143–159.

    CAS  Google Scholar 

  • Brodeur, R.D. 1986. Northward displacement of the euphausiid Nyctiphanes simplex Hansen to Oregon and Washington waters following the El Niño event of 1982–83. J. Crust. Biol. 6: 686–692.

    Article  Google Scholar 

  • Bucklin, A. 1986. The genetic structure of zooplankton populations. In Pelagic Biogeography. S. van der Spoel, A. Pierrot-Bults, B. Zahuranec, and R. Johnson, eds., pp. 35–41. UNESCO, Paris, 295 pp.

    Google Scholar 

  • Bucklin, A. and N.H. Marcus. 1985. Genetic differentiation of populations of the planktonic copepod Labidocera aestiva. Mar. Biol. 84: 219–224.

    Article  Google Scholar 

  • Bucklin, A. and P.H. Wiebe. 1986. Genetic heterogeneity in euphausiid populations:Euphausia krohnii and Nematoscelis megalops in the North Atlantic Slope Water. Limnol. Oceanogr. 31: 1346–1352.

    Article  Google Scholar 

  • Chelton, D.B., P.A. Bernai, and J.A. McGowan. 1982. Large-scale interannual physical and biological interaction in the California Current. J. Mar. Res. 40: 1095–1125.

    Google Scholar 

  • Colebrook, J.M. 1977. Annual fluctuations in biomass of taxonomic groups of zooplankton in the California Current, 1955–59. Fish. Bull. 75: 357–368.

    Google Scholar 

  • Cooney, R.T. and K. Coyle, 1985. The occurrence of the subtropical copepod, Mesocalanus tenuicornis, in Columbia Bay, Prince William Sound, Alaska. Crustaceana 49: 310–313.

    Article  Google Scholar 

  • Cowen, R.K. 1985. Large scale pattern of recruitment by the labrid, Semicossyphys pulcher. causes and implications. J. Mar. Res. 43: 719–742.

    Article  Google Scholar 

  • Cox, J.L., L.R. Haury, and J.J. Simpson. 1982. Spatial patterns of grazing-re-lated parameters in California coastal surface waters, July 1979. J. Mar. Res. 40: 1127–1153.

    Google Scholar 

  • Cushing, D.H. and R.R. Dickson. 1976. The biological response in the sea to climatic changes. Adv. Mar. Biol. 14: 1–122.

    Article  Google Scholar 

  • Davis, C.S. 1984. Interaction of a copepod population with the mean circulation on Georges Bank. J. Mar. Res. 42: 573–590.

    Article  Google Scholar 

  • Davis, C.S. and P.H. Wiebe. 1985. Macrozooplankton biomass in a warm-core Gulf Stream ring: time series changes in size structure, taxonomic composition, and vertical distribution. J. Geophys. Res. 90: 8871–8884.

    Article  Google Scholar 

  • Denman, K.L. and T.M. Powell. 1984. Effects of physical processes on planktonic ecosystems in the coastal ocean. Oceanogr. Mar. Biol. Ann. Rev. 22: 125–168.

    CAS  Google Scholar 

  • Deibel, D. 1985. Blooms of the pelagic tunicate, Dolioletta gegenbauri: Are they associated with Gulf Stream frontal eddies? J. Mar. Res. 43: 211–236.

    Article  Google Scholar 

  • Dietrich, A. and G. Uhlig. 1984. Stage specific classification of copepods with automatic image analysis. Crustaceana 7: 159–165.

    Google Scholar 

  • Downing, J. A. and F.H. Rigler, eds. 1984. A Manual on Methods for the Assessment of Secondary Productivity in Fresh Waters. IBP Handbook No. 17, 2nd. Ed. Blackwell, Oxford, 501 pp.

    Google Scholar 

  • Everson, I. 1982. Diurnal variations in mean volume backscattering strength of an Antarctic krill (Euphausia superba) patch. J. Plankton Res. 4: 155–162.

    Article  Google Scholar 

  • Ehrenberg, J.E. 1974. Two applications for a dual beam transducer in hydro-acoustic fish assessment systems. Proc. 1974 IEEE Conf. Eng. Ocean Environment 1: 152–155.

    Article  Google Scholar 

  • Flament, P., L. Armi, and L. Washburn. 1985. The evolving structure of an up-welling filament. J. Geophys. Res. 90: 11, 765–11, 778.

    Google Scholar 

  • Fleminger, A. 1973. Pattern, number, variability, and taxonomic significance of integumental organs (sensilla and glandular pores) in the genus Eucalanus (Copepoda, Calanoida). Fish. Bull. 71: 965–1010.

    Google Scholar 

  • Fleminger, A. 1979 Labidocera (Copepoda, Calanoida): new and poorly known Caribbean species with a key to species in the western Atlantic. Bull. Mar. Sci. 29: 170–190.

    Google Scholar 

  • Fleminger, A. and K. Hulsemann. 1974. Systematics and distribution of the four sibling species comprising the genus Pontellina Dana (Copepoda, Calanoida). Fish. Bull. 72: 63–120.

    Google Scholar 

  • Fleminger, A. and E. Moore. 1977. Two new species of Labidocera (Copepoda, Calanoida) from the western tropical North Atlantic region. Bull. Mar. Sci. 27: 520–529.

    Google Scholar 

  • Fogg, G.E., F.R.S., B. Egan, G.D. Floodgate, D.A. Jones. J.Y. Kassab, K. Lochte, E.I.S. Rees, S. Scrope-Howe, and C.M. Turley. 1985. Biological studies in the vicinity of a shallow-sea tidal mixing front. VII. The frontal ecosystems. Phil. Trans. R. Soc. Lond. B310:555–571.

    Google Scholar 

  • Fortier, L. and W.C. Leggett. 1985. A drift study of larval fish survival. Mar. Ecol. Prog. Ser. 25: 245–257.

    Article  Google Scholar 

  • Foward, R.B., Jr. 1976. Light and diurnal vertical migration: photobehavior and photophysiology of plankton. Photochem. Photobiol. Rev. 1: 157–257.

    Google Scholar 

  • Frost, B.W. 1974. Calanus marshallae, a new species of calanoid copepod closely allied to the sibling species C. finmarchicus and C. glacialis. Mar. Biol. 26: 77–99.

    Article  Google Scholar 

  • Funnel, B.M. and W.R. Riedel, eds. 1971. The Micropalaeontology of Oceans. Cambridge Univ. Press, Cambridge, 828 pp.

    Google Scholar 

  • Gardner, G.A. 1977. Analysis of zooplankton population fluctuations in the Strait of Georgia, British Columbia. J. Fish Res. Board Can. 34: 1196–1206.

    Article  Google Scholar 

  • Gardner. G. A. 1982. Biological and hydrographical evidence for Pacific equatorial water on the continental shelf north of Vancouver Island, British Columbia. Can. J. Fish. Aquat. Sci. 39: 660–667.

    Article  Google Scholar 

  • Genin, A. and G.W. Boehlert. 1985. Dynamics of temperature and chlorophyll structures above a seamount: An oceanic experiment. J. Mar. Res. 43: 907–924.

    Article  CAS  Google Scholar 

  • Greenblatt, P. 1982. Distributions of volume scattering observed with an 87.5-kHz sonar. J. Acoust. Soc. Am. 71: 879–885.

    Article  Google Scholar 

  • Greenblatt, P.R., D.F. Ferg, A. Zirino, and J.R. Losee. 1984. Observations of planktonic bioluminescence in the euphotic zone of the California Current. Mar. Biol. 84: 75–82.

    Article  Google Scholar 

  • Greenlaw, C.F., R.K. Johnson, and T. Pommeranz. 1980. Volume scattering strength predictions for Antarctic krill (Euphausia superba Dana). Meeres-forsch. 28: 48–55.

    Google Scholar 

  • Greenlaw, C.F. and W.G. Pearcy. 1985. Acoustical patchiness of mesopelagic micronekton. J. Mar. Res. 43: 163–178.

    Article  Google Scholar 

  • Griffiths, F.B. and S.B. Brandt. 1983. Distribution of mesopelagic decapod Crustacea in and around a warm-core eddy in the Tasman Sea. Mar. Ecol. Prog. Ser. 12: 175–184.

    Article  Google Scholar 

  • Hakanson, J.L. 1984. The long and short term feeding condition in field-caught Calanus pacificus, as determined from the lipid content. Limnol. Oceanogr. 29: 794–804.

    Article  CAS  Google Scholar 

  • Hamner, W.M. 1985. The importance of ethology for investigations of marine zooplankton. Bull. Mar. Sci. 37: 414–424.

    Google Scholar 

  • Hamner, W.M. and D. Schneider. 1986. Regularly spaced rows of medusae in the Bering Sea: Role of Langmuir circulation. Limnol. Oceanogr. 31: 171 —177.

    Article  Google Scholar 

  • Hampton, I., J.J. Agenbag, and D.L. Cram. 1979. Feasibility of assessing the size of the South West African pilchard stock by combining aerial and acoustic measurements. Fish. Bull. S. Africa 11: 10–22.

    Google Scholar 

  • Hannan, C.A. 1984. Planktonic larvae may act like passive particles in turbulent near-bottom flows. Limnol. Oceanogr. 29: 1108–1116.

    Article  Google Scholar 

  • Haq, B.U. and A. Boersma, eds. 1978. Introduction to Marine Micropaleontology. Elsevier, New York, 376 pp.

    Google Scholar 

  • Harding, J.P. and N. Tebble eds. 1963. Speciation in the Sea. The Systematics Association, London, 199 pp.

    Google Scholar 

  • Hardy, A.C. 1970. The Open Sea: Its Natural History. Part I: The World of the Plankton. Collins, London, 335 pp.

    Google Scholar 

  • Harris, R.P., J.-F. Samain, J. Modal, V. Martin-Jezequel, and S.A. Poulet. 1986. Chapman and Hall, New York, 384 pp.

    Google Scholar 

  • Harris, R.P., J.-F. Samain, J. Modal, V. Martin-Jezequel, and S.A. Poulet. 1986. Effects of algal diet on digestive enzyme activity in Calanus helgolandicus. Mar. Biol. 90: 353–361.

    Article  CAS  Google Scholar 

  • Haury, L.R. 1982. Mesoscale processes: some biological and physical connections. EOS 63: 267–275.

    Google Scholar 

  • Haury, L.R. 1984. An offshore eddy in the California Current system, part IV: Plankton distributions. Prog. Oceanogr. 13: 95–111.

    Article  Google Scholar 

  • Haury, L.R., J.A. McGowan, and P.H. Wiebe. 1978. Patterns and processes in the time-space scales of plankton distributions. In Spatial Pattern in Plankton Communities. J.H. Steele, ed., pp. 277–327. Plenum Press, New York, 470 pp.

    Google Scholar 

  • Haury, L.R., J.J. Simpson, J. Pelaez, C. Koblinsky, and D. Wiesenhahn. 1986. Biological consequences of a persistent eddy off Point Conception, California. J. Geophy. Res. 91: 12, 937–12, 956.

    Article  CAS  Google Scholar 

  • Haury, L.R., P.H. Wiehe, M.H. Orr, and M.G. Briscoe. 1983. Tidally generated high-frequency internal wave packets and their effects on plankton in Massachusetts Bay. J. Mar. Res. 41: 65–112.

    Article  Google Scholar 

  • Hayward, T.L. 1981. Mating and the depth distribution of an oceanic copepod. Limnol. Oceanogr. 26: 374–377.

    Article  Google Scholar 

  • Herman, A.W. 1986. A new optical Zooplankton counter measuring simultaneous profiles of Zooplankton and light attenuance (Abstract). Eos 67: 970.

    Google Scholar 

  • Herman, A.W. and M.R. Mitchell. 1981. Counting and identifying copepod species with an in situ electronic Zooplankton counter. Deep-Sea Res. 28: 739–755.

    Article  Google Scholar 

  • Herman, A.W., D.D. Sameoto, and A.R. Longhurst. 1981. Vertical and horizontal distribution patterns of copepods near the shelf break south of Nova Scotia. Can. J. Fish. Aquatic Sci. 38: 1065–1076.

    Article  Google Scholar 

  • Hickey, B.M. 1979. The California Current System—hypotheses and facts. Prog. Oceanogr. 8: 191–279.

    Article  Google Scholar 

  • Holliday, D.V. 1978. Data analysis and summary, MORD AX II, Appendix D. Biological data summary. Tracor Document No. T-78-SD-002-U.

    Google Scholar 

  • Holliday, D.V. 1980. Use of acoustic frequency diversity for marine biological measurements. In Advanced Concepts in Ocean Measurements for Marine Biology, F.P. Diemer, F.J. Vernberg, and D.Z. Mirkes, eds., pp. 423–460. University of North Carolina Press, Columbia, S.C., 572 pp.

    Google Scholar 

  • Holliday, D.V. and R.E. Pieper. 1980. Volume scattering strengths and Zooplankton distributions at acoustic frequencies between 0.5 and 3 MHz. J. Acousti. Soc. Am. 67: 135–146.

    Article  Google Scholar 

  • Holliday, D.V. and R.E. Pieper. In press. Application of underwater acoustics to the study of micronection and Zooplankton. In Proceedings of the International Conference on the Marine Science of the Arabian Sea. March 29-April 2, 1986, Karachi, Pakistan. Am. Inst. Biological Science, Washington, D.C.

    Google Scholar 

  • Hopkins, C.C.E., K.S. Tande, and S. GrØnvik. 1984. Ecological investigations of the Zooplankton community of Balsfjorden, northern Norway: An analysis of growth and overwintering tactics in relation to niche and environment in Metridia longa (Lubbock), Calanus finmarchicus (Gunnerus), Thysanoessa inermis (Kroyer) and T. raschi (M. Sars). J. Exp. Mar. Biol. Ecol. 82: 77–99.

    Article  Google Scholar 

  • Hörne, E.P.W. and T. Piatt. 1984. The dominant space and time scales of variability in the physical and biological fields on continental shelves. Rapp. P. -V. Reun. Cons. Int. Explor. Mer. 183: 8–19.

    Google Scholar 

  • Huntley, M. and E.R. Brooks. 1982. Effects of age and food availability on diel vertical migration of Calanus pacificus. Mar. Biol. 71: 23–31.

    Article  Google Scholar 

  • Isaacs, J.D., A. Fleminger and J.K. Miller. 1969. Distributional atlas of zoo-plankton biomass in the California Current region: Spring and Fall 1955–1959. CalCOFI Atlas No. 10.

    Google Scholar 

  • Jeffries, H.P., M.S. Berman, A.D. Poularikas, C. Katsinis, I. Melas, K. Sherman, and L. Bivins. 1984. Automated sizing, counting and identification of zoo-plankton by pattern recognition. Mar. Biol. 78: 329–334.

    Article  Google Scholar 

  • Jillet, J.B. and J.R. Zeldis. 1985. Aerial observations of surface patchiness of a planktonic crustacean. Bull. Mar. Sci. 37: 609–619.

    Google Scholar 

  • Johannes, R.E. 1978. Reproductive strategies of coastal marine fishes in the tropics. Env. Biol. Fishes 3: 65–84.

    Article  Google Scholar 

  • Johannes, R.E. 1981. Words of the Lagoon: Fishing and Marine Lore in the Palau District of Micronesia. Univ. Calif. Press, Berkeley, 245 pp.

    Google Scholar 

  • Johnson, D.R. 1985. Wind-forced dispersion of blue crab larvae in the Middle Atlantic Bight. Cont. Shelf Res. 4: 733–745.

    Article  Google Scholar 

  • Johnson, W.P., R.E. Lange, and E. Shulenberger. 1983. TOPBS-a towed oceano-graphic physical and biological sampler. IEEE Proc. Third Working Symp. on Oceanogr. Data Systems, pp. 141–145.

    Google Scholar 

  • Joyce, T. and P. Wiebe. 1983. Warm-core rings of the Gulf Stream. Oceanus 26: 34–44.

    Google Scholar 

  • Kerr, R.A. 1985. Small eddies are mixing the oceans. Science 230: 793.

    Article  PubMed  CAS  Google Scholar 

  • Kidd, R.J. and A.L. Rice. 1986. A mechanism for the transport of swarms of raninid megalopas in the eastern Caribbean. J. Crust. Biol. 6: 679–685.

    Article  Google Scholar 

  • KiØrboe, T. and K. Johansen. 1986. Studies of a larval herring (Clupea harengus L.) patch in the Buchan area. IV. Zooplankton distribution and productivity in relation to hydrographic features. Dana 6: 37–51.

    Google Scholar 

  • Komaki, Y. 1967. On the surface swarming of euphausiid crustaceans. Pac. Sci. 21: 433–448.

    Google Scholar 

  • Koslow, J.A., 1981. Feeding selectivity of schools of northern anchovy, Engraulis mordax, in the Southern California Bight. Fish. Bull. 79: 131–142.

    Google Scholar 

  • Kosro, P.M. and A. Huyer. 1986. CTD and velocity surveys of seaward jets off northern California, July 1981 and 1982. J. Geophys. Res. 91: 7680–7690.

    Article  Google Scholar 

  • Lasker, R. 1981. Factors contributing to variable recruitment of the northern anchovy (Engraulis mordax) in the California Current: contrasting years 1975 through 1978. Rapp. P.-V. Reun. Cons. Int. Explor. Mer 178: 375–388.

    Google Scholar 

  • Legendre, L. and S. Demers. 1984. Towards dynamic biological oceanography and limnology. Can. J. Fish. Aquat. Sci. 41: 2–19.

    Article  Google Scholar 

  • Lobel, P.S. and A.R. Robinson. 1986. Transport and entrapment of fish larvae by ocean mesoscale eddies and currents in Hawaiian waters. Deep-Sea Res. 33: 483–500.

    Article  Google Scholar 

  • Loeb, V.J. 1979. Vertical distribution and development of larval fishes in the North Pacific central gyre during summer. Fish. Bull. 77: 777–793.

    Google Scholar 

  • Longhurst, A.R. 1976. Vertical migration. In Ecology of the Seas, D.H. Cushing and J.H. Walsh, eds., pp. 116–137. Blackwell, Oxford, 467 pp.

    Google Scholar 

  • Longhurst, A. 1985. The structure and evolution of plankton communities. Prog. Oceanog. 15: 1–35.

    Article  Google Scholar 

  • Lynch, R.V. 1981. The distribution of luminous marine organisms: a literature review. In Bioluminescence, K.H. Nealson, ed., pp. 153–159. Burgess Pub., Minneapolis, MN, 165 pp.

    Google Scholar 

  • Mackas, D.L. 1984. Spatial autocorrelation of plankton community composition in a continental shelf ecosystem. Limnol. Oceanogr. 29: 451–471.

    Article  Google Scholar 

  • Mackas, D., K. Denman, and M. Abbott. 1985. Plankton patchiness: biology in the physical vernacular. Bull. Mar. Sci. 37: 652–674.

    Google Scholar 

  • Marcus, N. 1985. Population dynamics of marine copepods: the importance of genetic variation. Bull. Mar. Sci. 37: 684–690.

    Google Scholar 

  • Marine Research Committee. 1957. The marine research committee, 1947–1955. Calif. Coop. Oceanic Fish. Invest. Rep. 1953–1955, pp. 7–9.

    Google Scholar 

  • Marra, J. and E.O. Hartwig. 1984. Biowatt: a study of bioluminescence and optical variability in the sea. EOS 65: 732–733.

    Google Scholar 

  • Mayzaud, P. 1986. Digestive enzymes and their relation to nutrition. In The Biological Chemistry of Marine Copepods, pp. 165–225, E.D.S. Corner and S.C.M. O’Hara, eds., Clarendon Press, Oxford, 349 pp.

    Google Scholar 

  • Mayzaud, P. and R.J. Conover. 1984. Distribution of digestive enzymes in the Zooplankton during the spring bloom in a Nova Scotia inlet. Can. J. Fish. Aquat. Sci. 41: 245–253.

    Article  CAS  Google Scholar 

  • McGowan, J. A. 1960. The relationship of the distribution of the planktonic worm Poeobius meseres Heath, to the water masses of the North Pacific. Deep-Sea Res. 6: 125–139.

    Google Scholar 

  • McGowan, J.A. 1971. Oceanic biogeography of the Pacific. In The Micropaleontology of Oceans, pp. 3–74. B.M. Funnell and W.R. Riedel, eds. Cambridge Univ. Press, Cambridge, 828 pp.

    Google Scholar 

  • McGowan, J.A. 1974. The nature of oceanic ecosystems. In The Biology of the Oceanic Pacific, C.B. Miller, ed., Oregon State Univ. Press, Corvallis. 155 pp.

    Google Scholar 

  • McGowan, J.A. 1985. El Niño 1983 in the Southern California Bight. In El Niño North: Niño Effects in the Eastern Subarctic Pacific Ocean, pp. 166–184. W.S. Wooster, ed. Washington Sea Grant Program, Univ. Washington, Seattle, 312 pp.

    Google Scholar 

  • McGowan, J.A. and V.J. Fraundorf. 1966. The relation between size of net used and estimates of Zooplankton diversity. Limnol. Oceanogr. 11: 456–469.

    Article  Google Scholar 

  • Miller, C.B. 1970. Some environmental consequences of vertical migration in marine Zooplankton. Limnol. Oceanogr. 15: 727–741.

    Article  Google Scholar 

  • Miller, C.B. 1983. The Zooplankton of estuaries. In Ecosystems of the World 26. Estuaries and Enclosed Seas, B.H. Ketchum, ed., pp. 103–149. Elsevier, New York, 500 pp.

    Google Scholar 

  • Mullin, M.M., E.R. Brooks, F.M.H. Reid, J. Napp, and E.F. Stewart. 1985. Vertical structure of nearshore plankton off Southern California: a storm and a larval fish food web. Fish. Bull. 83: 151–170.

    Google Scholar 

  • Neále, J.W. and M.D. Brasier, eds. 1981. Microfossils from Recent and Fossil Shelf Seas. Ellis Horwood Ltd., Chichester, 380 pp.

    Google Scholar 

  • Nihoul, J.C.J., ed. 1986. Marine Interfaces Ecohydrodynamics. Elsevier, New York, 670 pp.

    Google Scholar 

  • Olson, D.B. and R.H. Backus. 1985. The concentrating of organisms at fronts: a cold-water fish and a warm-core Gulf Stream ring. J. Mar. Res. 43: 113–137.

    Article  Google Scholar 

  • Omori, M. and D. Gluck. 1979. Life history and vertical migration of the pelagic shrimp Sergestes similis off the Southern California coast. Fish. Bull. 77: 183–198.

    Google Scholar 

  • Omori, M. and W.M. Hamner. 1982. Patchy distribution of Zooplankton: behavior, population assessment and sampling problems. Mar. Biol. 72: 193–200.

    Article  Google Scholar 

  • Oosterhuis, S.S. and M.A. Baars. 1985. On the usefulness of digestive enzyme activity as index for feeding activity in copepods. Hydrobiol. Bull. 19: 89–100.

    Google Scholar 

  • Orr, M.H. 1981. Remote acoustic detection of Zooplankton response to fluid processes, oceanographic instrumentation, and predators. Can. J. Fish. Aquat. Sci. 38: 1096–1105.

    Article  Google Scholar 

  • Ortner, P.B., S.R. Cummings, R.P. Aftring, and H.E. Edgerton. 1979. Silhouette photography of oceanic Zooplankton. Nature 277: 50.

    Article  Google Scholar 

  • Ortner, P.B., L.C. Hill, and H.E. Edgerton. 1981. In-situ silhouette photography of Gulf Stream Zooplankton. Deep-Sea Res. 28: 1569–1576.

    Article  Google Scholar 

  • Ortner, P.B., R.E. Pieper, and D.L. Mackas. 1983. Advances in Zooplankton sampling. In Fish Ecology III: A Foundation for a Recruitment Experiment, B.J. Rothschild and C.G.H. Rooth, eds., pp. 355–380. Univ. Miami Tech. Rep. 82008.

    Google Scholar 

  • Owen, R.W., Jr. 1966. Small-scale, horizontal vortices in the surface layer of the sea. J. Mar. Res. 24: 56–66.

    Google Scholar 

  • Owen, R.W. 1981. Fronts and eddies in the sea: mechanisms, interactions and biological effects. In The Analysis of Marine Ecosystems, A.R. Longhurst, ed., pp. 197–233. Academic Press, London, 742 pp.

    Google Scholar 

  • Paffenhofer, G.-A., B.T. Wester, and W.D. Nicholas. 1984. Zooplankton abundance in relation to state and type of intrusions onto the southeastern United States shelf during summer. J. Mar. Res. 42: 995–1017.

    Article  Google Scholar 

  • Parrish, R.H., C.S. Nelson, and A. Bakun. 1981. Transport mechanisms and reproductive success of fishes in the California Current. Biol. Oceanogr. 1: 175–203.

    Google Scholar 

  • Peterson, W.T. and C.B. Miller. 1977. Seasonal cycle of Zooplankton abundance and species composition along the central Oregon coast. Fish. Bull. 75: 717–724.

    Google Scholar 

  • Peterson, W.T., C.B. Miller, and A. Hutchinson. 1979. Zonation and maintenance of copepod populations in the Oregon upwelling zone. Deep-Sea Res. 26: 467–494.

    Article  Google Scholar 

  • Petit, D. 1982. Calanoides carinatus (copépode pélagique) sur le plateau continental congolais. III. Abondance, tailles et temps de génération. Relations avec la chlorophylle. Oceanögr. trop. 17: 155–175.

    Google Scholar 

  • Pieper, R.E. 1983. Quantitative estimates of euphausiid biomass determined by high-frequency acoustics. Biol. Oceanogr. 2: 133–149.

    Google Scholar 

  • Pieper, R.E. and B.G. Bargo. 1980. Acoustical measurements of a migrating layer of the Mexican lampfish, Triphoturus mexicanus at 102 kilohertz. Fish. Bull. 77: 935–942.

    Google Scholar 

  • Pieper, R.E. and D.V. Holliday. 1984. Acoustic measurements of Zooplankton distributions in the sea. J. Cons. Int. Explor. Mer 41: 226–238.

    Google Scholar 

  • Pinkel, R. 1983. Doppler sonar observations of internal waves: wave-field structure. J. Phys. Oceanogr. 13: 804–815.

    Article  Google Scholar 

  • Platt, T. and K. Denman. 1978. The structure of pelagic marine ecosystems. Rapp. P.-V. Reun. Cons. Int. Explor. Mer, 173: 60–65.

    Google Scholar 

  • Pleuddemann, A.J. 1987. Observations of the upper ocean using a multi-beam Doppler sonar. Dissertation, University of California, San Diego, 183 pp.

    Google Scholar 

  • Pugh, P.R. and G.A. Boxshall. 1984. The small-scale distribution of plankton at a shelf station off the northwest African coast. Cont. Shelf Res. 3: 399–423.

    Article  Google Scholar 

  • Radach, G. 1984. Variations in the plankton in relation to climate. Rapp. P.-V. Reun. Cons. Int. Explor. Mer. 185: 234–254.

    Google Scholar 

  • Ramsay, A.T.S., ed. 1977. Oceanic Micropaleontology, Vols. 1 & 2. Academic Press, London, 1453 pp.

    Google Scholar 

  • Raymont, J.E.G. 1963. Plankton and Productivity in the Oceans. Pergamon, New York, 660 pp.

    Google Scholar 

  • Raymont, J.E.G. 1983. Plankton and Productivity in the Oceans, 2nd Ed., Vol. 2—Zooplankton. Pergamon, New York, 824 pp.

    Google Scholar 

  • Richter, K.E. 1985. Acoustic determination of small-scale distributions of individual zooplankters and zooplankton aggregations. Deep-Sea Res. 32: 163–182.

    Article  Google Scholar 

  • Robinson, A.R. 1983. Overview and summary of eddy science. In Eddies in Marine Science, A.R. Robinson, ed., pp. 3–15. Springer-Verlag, Berlin, 601 pp.

    Google Scholar 

  • Roesler, C.S. and D.B. Chelton. 1987. Seasonal and non-seasonal zooplankton variability in the California Current. CalCOFT Rep. 28 (in press).

    Google Scholar 

  • Roman, M.R., A.L. Gauzens, and T.J. Cowles. 1985. Temporal and spatial changes in epipelagic microzooplankton and mesozooplankton biomass in warm-core Gulf Stream ring 82-B. Deep-Sea Res. 32: 1007–1022.

    Article  Google Scholar 

  • Sameoto, D.D. 1976. Distribution of sound scattering layers caused by euphausiids and their relationship to chlorophyll a concentrations in the Gulf of St. Lawrence estuary. J. Fish. Res. Board Can. 33: 681–687.

    Article  CAS  Google Scholar 

  • Sargent, J.R. and R.J. Henderson. 1986. Lipids. In The Biological Chemistry of Marine Copepods, E.D.S. Corner and S.C.M. O’Hara, eds., pp. 59–108. Clarendon Press, Oxford, 349 pp.

    Google Scholar 

  • Scheltema, R.S. and LP. Williams. 1983. Long-distance dispersal of planktonic larvae and the biogeography and evolution of some Polynesian and western Pacific mollusks. Bull. Mar. Sci. 33: 545–565.

    Google Scholar 

  • Scrope-Howe, S. and D.A. Jones. 1985. Biological studies in the vicinity of a shallow-sea tidal mixing front. Part V. Composition, abundance and distribution of zooplankton in the western Irish Sea, April 1980 to November 1981. Phil. Trans. R. Soc. Lond. B310:501–519.

    Google Scholar 

  • Sette, O.E. and J.D. Isaacs, eds. 1960. Symposium on “The Changing Pacific Ocean in 1957 and 1958”. Calif. Coop. Oceanic Fish. Invest. Rep. 7: 13–217.

    Google Scholar 

  • Shanks, A.L. 1983. Surface slicks associated with tidally forced internal waves may transport pelagic larvae of benthic invertebrates and fishes shoreward. Mar. Ecol. Prog. Ser. 13: 311–315.

    Article  Google Scholar 

  • Shanks, A.L. 1985. Behavioral basis of internal-wave-induced shoreward transport of megalopae of the crab Pachygrapsus crassipes. Mar. Ecol. Prog. Ser. 24: 289–295.

    Article  Google Scholar 

  • Sheldon, R.W., W.H. Sutcliffe Jr. and M.A. Paranjape. 1977. Structure of pelagic food chain and relationship between plankton and fish production. J. Fish. Res. Board Can. 34: 2344–2353.

    Article  Google Scholar 

  • Shulenberger, E. 1980. Description of spatial and temporal patterns of abundance in open-ocean zooplankton: Where are we now and where do we go from here. In Advanced Concepts in Ocean Measurements for Marine Biology, F.P. Diemer, F.J. Vernberg and D.Z. Mirkes, eds., pp. 257–273. University of South Carolina Press, Columbia, S.C., 572 pp.

    Google Scholar 

  • Simpson, J.J. and T.D. Dickey. 1981. The relationship between downward ir-radiance and upper ocean structure. J. Phys. Oceanogr. 11: 309–323.

    Article  Google Scholar 

  • Simpson, J.J., C.J. Koblinsky, L.R. Haury, and T.D. Dickey. 1984. An offshore eddy in the California Current System, Preface. Prog. Oceanogr. 13: 1–4.

    Article  Google Scholar 

  • Smith, P.E. 1985. A case history of an anti-El Niño to El Niño transition on plankton and nekton distribution and abundances. In El Niño North: Niño Effects in the Eastern Subarctic Pacific Ocean, pp. 121–142. W.S. Wooster, ed. Washington Sea Grant Program, Univ. Washington, Seattle, 312 pp.

    Google Scholar 

  • Smith, S.L. 1982. The northwestern Indian Ocean during the monsoons of 1979: distribution, abundance, and feeding of zooplankton. Deep-Sea Res. 29: 1331–1353.

    Article  Google Scholar 

  • Soutar, A. and J.D. Isaacs. 1974. Abundance of pelagic fish during the 19th and 20th centuries as recorded in anaerobic sediments off California. Fish. Bull. 72: 257–275.

    Google Scholar 

  • Sprules, W.G. and M. Munawar. 1986. Plankton size spectra in relation to ecosystem productivity, size, and perturbation. Can. J. Fish. Aquat. Sci. 43: 1789–1794.

    Article  Google Scholar 

  • Stanton, T.K. 1985. Density estimates of biological sound scatterers using sonar echo peak PDFs. J. Acoust. Soc. Am. 78: 1868–1873.

    Article  Google Scholar 

  • Steedman, H.F., ed. 1976. Zooplankton Fixation and Preservation. Monographs on Oceanographic Methodology 4. UNESCO, Paris, 350 pp.

    Google Scholar 

  • Swift, E., W.H. Biggley, P.G. Verity, and D.T. Brown. 1983. Zooplankton are major sources of epipelagic bioluminescence in the southern Sargasso Sea. Bull. Mar. Sci. 33: 855–863.

    Google Scholar 

  • Swift, E., E.J. Lessard, and W.H. Biggley. 1985. Organisms associated with stimulated epipelagic bioluminescence in the Sargasso Sea and the Gulf Stream. J. Plankton Res. 7: 831–848.

    Article  Google Scholar 

  • Tett, P. and A. Edwards. 1984. Mixing and plankton: an interdisciplinary theme in oceanography. Oceanogr. Mar. Biol. Ann. Rev. 22: 99–123.

    CAS  Google Scholar 

  • The Ring Group. 1981. Gulf Stream cold-core rings: their physics chemistry, and biology. Science 212: 1091–1100.

    Article  Google Scholar 

  • Townsend, D.W., T.L. Cucci, and T. Berman. 1984. Subsurface chlorophyll maxima and vertical distribution of Zooplankton in the Gulf of Maine. J. Plankton Res. 6: 793–802.

    Article  CAS  Google Scholar 

  • Traganza, E.D., J.C. Conrad, and L.C. Breaker. 1981. Satellite observations of a cyclonic upwelling system and giant plume in the California Current. In Coastal Upwelling, F.A. Richards, ed., pp. 228–241. Amer. Geophys. Union, Washington, D.C., 529 pp.

    Google Scholar 

  • Uchida, R.N. and D.T. Tagami. 1985. Groundfish fisheries and research in the vicinity of seamounts in the North Pacific Ocean. Mar. Fish. Rev. 46: 1–17.

    Google Scholar 

  • UNESCO. 1968. Zooplankton Sampling. Monographs on Oceanographic Methodology 2. UNESCO. Geneva, 174 pp.

    Google Scholar 

  • Van der Spoel, S. and R.P. Heyman. 1983. A Comparative Atlas of Zooplankton: Biological Patterns in the Oceans. Springer-Verlag, New York, 186 pp.

    Google Scholar 

  • Victor, B.C. 1984. Coral reef fish larvae: patch size estimation and mixing in the plankton. Limnol. Oceanogr. 29: 1116–1119.

    Article  Google Scholar 

  • Waples, R.S. 1986. A Multispecies Approach to the Analysis of Gene Flow in Marine Shore Fishes. Dissertation, University of California, San Diego, 325 pp.

    Google Scholar 

  • Wiebe, P.H. and S.H. Boyd. 1978. Limits of Nematoscelis megalops in the Northwestern Atlantic in relation to Gulf Stream cold core rings. I. Horizontal and vertical distributions. J. Mar. Res. 36: 119–142.

    Google Scholar 

  • Wiebe, P.H. and G.R. Flierl. 1983. Euphausiid invasion/dispersal in Gulf Stream cold-core rings. Aust. J. Mar. Freshwater Res. 34: 625–652.

    Article  Google Scholar 

  • Wiebe, P.H., G.R. Flierl, C.S. Davis, V. Barber, and S.H. Boyd. 1985. Macro-zooplankton biomass in Gulf Stream warm-core rings: spatial distribution and.

    Google Scholar 

  • Wiebe, P.H., E.M. Hulbert, E.J. Carpenter, A.E. Jahn, G.P. Knapp, S.H. Boyd, P.B. Ortner, and J.L. Cox. 1976. Gulf Stream cold-core rings: large-scale interaction sites for open ocean plankton communities. Deep-sea Res. 23: 695–710.

    Google Scholar 

  • temporal changes. J. Geophys. Res. 90: 8885–8901.

    Google Scholar 

  • Willason, S.W., J. Favuzzi, and J.L. Cox. 1986. Patchiness and nutritional condition of zooplankton in the California Current Fish. Bull. 84: 157–176.

    Google Scholar 

  • Wilson, E.O. 1985. Time to revive systematics. Science 230: 1227.

    Article  PubMed  CAS  Google Scholar 

  • Wishner, K.F. 1980. Near-bottom sound scatterers in the Ecuador Trench. Deep-Sea Res. 27: 217–223.

    Article  Google Scholar 

  • Wormuth, J.H. 1985. The role of cold-core Gulf Stream rings in the temporal and spatial patterns of euthecosomatous pteropods. Deep-Sea Res. 32: 773–788.

    Article  Google Scholar 

  • Wroblewski, J.S. 1984. Formulation of growth and mortality of larval northern anchovy in a turbulent feeding environment. Mar. Ecol. Prog. Ser. 20: 13–22.

    Article  Google Scholar 

  • Yamamoto, T. and S. Nishizawa. 1986. Small-scale zooplankton aggregations at the front of a Kuroshio warm-core ring. Deep-Sea Res. 33: 1729–1740.

    Article  Google Scholar 

  • Young, R.E. 1983. Oceanic bioluminescence: an overview of general functions. Bull. Mar. Sci. 33: 829–845.

    Google Scholar 

  • Zeldis, J.R. and J.B. Met. 1982. Aggregation of pelagic Munida gregaria (Fabri-cius) (Decapoda, Anomura) by coastal fronts and internal waves. J. Plankton Res. 4: 839–857.

    Article  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1988 Springer-Verlag New York Inc.

About this chapter

Cite this chapter

Haury, L.R., Pieper, R.E. (1988). Zooplankton: Scales of Biological and Physical Events. In: Soule, D.F., Kleppel, G.S. (eds) Marine Organisms as Indicators. Springer, New York, NY. https://doi.org/10.1007/978-1-4612-3752-5_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-3752-5_3

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4612-8334-8

  • Online ISBN: 978-1-4612-3752-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics