Skip to main content

Characteristics of Dissolutional Cave Systems in Carbonate Rocks

  • Chapter
Paleokarst

Abstract

A dissolutional cave or cave system is defined as a solution conduit of 5 to 15 mm minimum diameter that extends continuously between groundwater input points and output points. Thousands that are of explorable dimensions are known; the greatest contain more than 100 km of accessible galleries or are more than 1000 m deep.

Approximately 80% of these caves were created by meteoric water circulating without unusual geologic confinement; these are common caves. Their plan pattern building is governed by hydraulic gradients in penetrable fissures, complicated by reorientation of gradients when initial conduits connect and by microfeatures of the fissures. Thus, patterns are not precisely predictable. On the long profile, caves may display drawdown or invasion, vadose morphology, and shallow, deep, or mixed phreatic morphology. Many caves are multi-phase features with sequences of levels.

Two-dimensional joint-guided mazes of passages develop as anomalous portions of common cave systems or as separate caves, due to artesian confinement or diffuse input or to rapid flooding. Caves formed by CO2-rich thermal waters display distributary dendritic or 2-D or 3-D maze forms. Some large caverns may develop where H2S-rich waters are oxidized. Many irregular honeycomb caves develop where salt and fresh water mix in the coastal zone.

Phreatic passage cross-sections tend to be elliptical but are complicated by differing solubility or armoring of the floor. Vadose cross-sections are canyon-like or trapezoid. Both may display solutional scalloping or a paleoflow indicator, or may be modified or destroyed by breakdown.

A variety of clastic deposits accumulate in cave interiors. Fluvial facies are dominant. More than 100 secondary minerals are precipitated in caves. Calcitc is predominant and the most significant for paleo- environmental reconstructions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Acaroglu, E.R., and Graf, W.H., 1968, Sediment transport in conveyance systems, 2:the modes of sediment transport and their related bedforms in conveyance systems: Bull., Int. Assoc. Sci. Hydrol., v. 13, p. 123–135.

    Article  Google Scholar 

  • Allen, J.R.L., 1972, On the origin of cave flutes and scallops by the enlargement of inhomogeneities: Rass. Speleo. Ital., v. 24, p. 3–19.

    Google Scholar 

  • Atkinson, T.C., 1983, Growth mechanisms of spe- leothems in Castleguard Cave, Columbia Icefields, Alberta, Canada: Arctic and Alpine Res., v. 15(4), p. 523–536.

    Article  Google Scholar 

  • Back, W., Hanshaw, B.B., and Van Driel, J.N., 1984, Role of groundwater in shaping the eastern coastline of the Yucatan Peninsula, Mexico, in LaFleur, R.G., ed., Groundwater as a geomorphic agent: London, Allen and Unwin, Inc., p. 280–293.

    Google Scholar 

  • Bakalowicz, M., Ford, D.C., Miller, T.E., Palmer, A.N., and Palmer, M.V., Thermal genesis of solution caves in the Black Hills, South Dakota. Bull., Geol. Am. Soci, in press.

    Google Scholar 

  • Bastin, B., 1979, L’analyse pollinique des stalagmites: une nouvelle possibility d’approche des fluctuations climatiques du Quaternaire: Annales de la Societe Geologique de Belgique, t. 101, p. 13–19.

    Google Scholar 

  • Beaupre, M., 1975, Les regions karstiques du Quebec: Speleo-Quebec, v. 2(2), p. 22–51.

    Google Scholar 

  • Berner, R.A., 1978, Rate control of mineral dissolution under earth surface conditions: Am. J. Sci., v. 278, p. 1235–1252.

    Article  Google Scholar 

  • Blumberg, P.N., and Curl, R.L., 1974, Experimental and theoretical studies of dissolution roughness: J. Fluid Mech., v. 65, p. 735–751.

    Article  Google Scholar 

  • Bocker, T., 1969, Karstic water research in Hungary: Internat. Assoc. Sci. Hydrol. Bull., v. 14, p. 4–12.

    Google Scholar 

  • Bogli, A., 1961, Die Hohlenlehme: Mem. Rass. Spel. Ital., v. 5, p. 1–21.

    Google Scholar 

  • Bogli, A., 1964, Mischungskorrosion, ein Beitrag zum Verkarstungs-problem: Erdkunde, v. 18(2), p. 83–92.

    Google Scholar 

  • Bogli, A., 1970, Le Holloch et son karst: Neuchatel, Ed. La Baconniere.

    Google Scholar 

  • Bogli, A., 1980, Karst hydrology and physical speleology: Berlin, Heidelberg, New York, Springer- Verlag, 284 p.

    Google Scholar 

  • Bretz, J.H., 1942, Vadose and phreatic features of limestone caves: J. Geol., v. 50(6), p. 675–81.

    Google Scholar 

  • Bretz, J.H., 1949, Carlsbad Caverns and other caves of the Guadalupe Block, New Mexico: J. Geol., v. 57, p. 447–463.

    Google Scholar 

  • Brod, L.G., 1964, Artesian origin of fissure caves in Missouri: Bull., Nat. Speleo. Soc. Am., v. 26(3), p. 83–112.

    Google Scholar 

  • Broughton, P.L., 1983, Environmental implications of competitive growth fabrics in stalactitic carbonate: Int. J. Speleo., v. 13(1–4), p. 31–42.

    Google Scholar 

  • Bull, P.A., 1977, Laminations or varves? Processes of fine-grained sediment deposition in caves: Proc. of the 7th Internat. Speleo. Cong., p. 86–89.

    Google Scholar 

  • Bull, P.A., 1983, Chemical sedimentation in caves, in Goudie, A.S., and Pye, K., eds., Chemical sediments and geomorphology: precipitates and residua in the near-surface environment: London, Academic Press, p. 301–320.

    Google Scholar 

  • Busenberg, E., and Plummer, L.N., 1982, The kinetics of dissolution of dolomite in C02–H20 systems at 1.5 to 65°C and 0 to 1 atm PC02: Am. J. Sci., v. 282, p. 45–78.

    Article  Google Scholar 

  • Butler, J.N., 1982, Carbon dioxide equilibria and their applications: Reading, MA, Addison-Wesley, 259 p.

    Google Scholar 

  • Craig, D.H., this volume, Caves and other features of Permian karst in San Andres Dolomite, Yates Field reservoir, West Texas.

    Google Scholar 

  • Curl, R.L., 1966, Scallops and flutes: Trans., Cave Res. Gp., G.B., v. 7(2), p. 121–160.

    Google Scholar 

  • Davis, D.G., 1980, Cave development in the Guadalupe Mountains: a critical review of recent hypotheses: Bull., Nat. Speleo. Soc. Am., v. 42(3), p. 42–48.

    Google Scholar 

  • Davis, W.M., 1930, Origin of limestone caves: Bull., Geol. Soc. Am., v. 41, p. 475–628.

    Google Scholar 

  • Deal, D.E., 1968, Origin and secondary mineralization of caves in the Black Hills of South Dakota: Proc. of the 4th Internat. Speleo. Cong., Yugoslavia, v. 3, p. 67–70.

    Google Scholar 

  • Deike, G.H., and White, W.B., 1969, Sinuosity in limestone solution conduits: Am. J. Sci., v. 267, p. 230–241.

    Article  Google Scholar 

  • Drake, J.J., 1980, The effect of soil activity on the chemistry of carbonate groundwaters: Water Resources Res., v. 16(2), p. 381–386.

    Article  Google Scholar 

  • Drake, J.J., 1983, The effects of geomorphology and seasonality on the chemistry of carbonate groundwater: J. Hydrol., v. 61, p. 223–236.

    Article  Google Scholar 

  • Drake, J.J., 1984, Theory and model for global carbonate solution by groundwater, in LaFleur, R.G., ed., Groundwater as a geomorphic agent: London, Allen and Unwin, p. 210–226.

    Google Scholar 

  • Dreybrodt, W., 1981, Kinetics of the dissolution of calcite and its applications to karstification: Chem. Geol., v. 31, p. 245–269.

    Article  Google Scholar 

  • Dublijansky, V.N., 1979, The gypsum caves of the Ukraine: Cave Geol., v. 1(6), p. 163–183.

    Google Scholar 

  • Dublijansky, V.N., 1980, Hydrothermal karst in the alpine folded belt of southern parts of the USSR: Kras i Speleologia, v. 3(12), p. 18–36.

    Google Scholar 

  • Egemeier, S.J., 1981, Cavern development by thermal waters: Nat. Speleo. Soc. Bull., v. 43, p. 31–51.

    Google Scholar 

  • Engh, L., 1980, Karstomradet vid Lummelunds bruk, Gotland: Lund Univ. Geog. Institute, 290 P-.

    Google Scholar 

  • Ewers, R.O., 1982, Cavern development in the dimensions of length and breadth: Ph.D. thesis, McMaster Univ., Hamilton, Ont., Canada, 398 p.

    Google Scholar 

  • Fish, J.E., 1977, Karst hydrogeology and geomorphology of the Sierra de El Abra and the Valles- San Luis Potosi Region, Mexico: Ph.D. thesis, McMaster Univ., Hamilton, Ont., Canada, 469 p.

    Google Scholar 

  • Folk, R.L., and Assereto, R., 1976, Comparative fabrics of length-slow and length-fast calcite and calcitized aragonite in a Holocene speleothem, Carlsbad Caverns, New Mexico: J. Sed. Pet., v. 46(3), p. 486–496.

    Google Scholar 

  • Ford, D.C., 1968, Features of cavern development in central Mendip: Cave Res. Group, G.B., Trans., v. 10, p. 11–25.

    Google Scholar 

  • Ford, D.C., 1971, Geologic structure and a new explanation of limestone cavern genesis: Cave Res. Group, G.B., Trans., v. 13(2), p. 81–94.

    Google Scholar 

  • Ford, D.C., 1980, Threshold and limit effects in karst geomorphology, in Coates, D.L., and Vitek, J.D., eds., Thresholds in geomorphology: London, Allen and Unwin, p. 345–362.

    Google Scholar 

  • Ford, D.C., and Ewers, R.O., 1978, The development of limestone cave systems in the dimensions of length and depth: Can. J. Earth Sci., v. 15, p. 1783–1798.

    Article  Google Scholar 

  • Ford, D.C., Smart, P.L., and Ewers, R.O., 1983, The physiography and speleogenesis of Castleguard Cave, Columbia Icefields, Alberta, Canada: Arctic and Alpine Res., v. 15(4), p. 437–450.

    Google Scholar 

  • Fulweiler, R.E., and McDougal, S.E., 1971, Bedded- ore structures, Jefferson City Mine, Jefferson City, Tennessee: Econ. Geol., v. 66, p. 763–769.

    Article  Google Scholar 

  • Gale, S.J., 1984, The hydraulics of conduit flow in carbonate aquifers: J. Hydrol., v. 70, p. 309–324.

    Article  Google Scholar 

  • Garrels, R.M., and Christ, C.L., 1965, Solutions, minerals and equilibria: New York, Harper and Row, 450 p.

    Google Scholar 

  • Gascoyne, M., Benjamin, G.J., Schwarcz, H.P., and Ford, D.C., 1979, Sea-level lowering during the Illinoisian glaciation: evidence from a Bahama blue hole, Science, v. 205, p. 806–808.

    Article  Google Scholar 

  • Gascoyne, M., and Schwarcz, H.P., 1982, Carbonate and sulphate precipitates, in Ivanovich, M., and Harmon, R.S., eds., Uranium series disequilibrium: applications to environmental problems: Oxford, Clarendon Press, p. 268–301.

    Google Scholar 

  • Glennie, E.A., 1954, Artesian flow and cave development: Cave Res. Group, G.B., Trans., v. 3, p. 55–71.

    Google Scholar 

  • Goodchild, M.F., and Ford, D.C., 1971, Analysis of scallop patterns by simulation under controlled conditions: J. Geol., v. 79, p. 52–62.

    Article  Google Scholar 

  • Gospodaric, R., 1974, Fluvial sediments in Krizna Jama: Acta Carsologica, v. 6, p. 327–363.

    Google Scholar 

  • Gregor, V.A., 1981, Karst and caves in the Turks and Caicos Islands, B.W.I.: Proc. of the 8th In- ternat. Speleo. Cong., Lexington, KY, USA, p. 805–806.

    Google Scholar 

  • Hendy, C.H., and Wilson, A.T., 1968, Paleoclimatic data from speleothems: Nature, v. 216, p. 48–51.

    Article  Google Scholar 

  • Herman, J.S., 1982, The dissolution kinetics of calcite, dolomite and dolomitic rocks in the C02-water system, Ph.D. thesis, Penn State Univ., College Park, Pennsylvania.

    Google Scholar 

  • Hill, C.A., ed., 1981, Saltpeter: a symposium, Bull., Nat. Speleo. Soc., v. 43(4), p. 83-131.

    Google Scholar 

  • Hill, C.A., 1987, Geology of Carlsbad Cavern and other caves in the Guadalupe Mountains, New Mexico and Texas: New Mexico Bureau of Mines and Mineral Resources, Bulletin 117, in press.

    Google Scholar 

  • Hill, C.A., and Forti, P., 1986, Cave minerals of the world: Huntsville, AL, Nat. Speleo. Soc., 238 p.

    Google Scholar 

  • Jakucs, L., 1977, Morphogenetics of karst regions: variants of karst evolution: Budapest, Akademiai Kiado, 284 p.

    Google Scholar 

  • Jennings, J.N., 1985, Karst geomorphology: Oxford, Basil Blackwell, 293 p.

    Google Scholar 

  • Kastning, E.H., 1983, Relict caves as evidence of landscape and aquifer evolution in a deeply dissected carbonate terrain: southwest Edwards Plateau, Texas, USA: J. Hydrol., v. 61, p. 89–112.

    Google Scholar 

  • Kempe, S., Brandt, A., Seeger, M., and Vladi, F., 1975, “Facetten” and “Laugdecken,” the typical morphological elements of caves developed in standing water: Ann. Speleol., v. 30(4), p. 705–708.

    Google Scholar 

  • Langmuir, D., 1971, The geochemistry of some carbonate ground waters in central Pennsylvania: Geochim et Cosmochim Acta, v. 35, p. 1023–1045.

    Article  Google Scholar 

  • Latham, A.G., Schwarcz, H.P., Ford, D.C., and Pearce, G.W., 1979, Paleomagnetism of stalagmite deposits: Nature, v. 280, p. 383–385.

    Google Scholar 

  • Lauritzen, S.E., Abbott, J., Arnesen, R., Crossley, G., Grepperud, D., Ive, A., and Johnson, S., 1986, Morphology and hydraulics of an active phreatic conduit: Cave Science, v. 12(3), p. 139–146.

    Google Scholar 

  • Marshall, P., and Brown, M.C., 1974, Ice in Coul- thard Cave, Alberta: Can. J. Earth Sci., v. 11(4), p. 510–518.

    Article  Google Scholar 

  • Martel, E.a., 1921, Nouveau traite des eaux southerraines: Paris, Editions Doin., 840 p.

    Google Scholar 

  • Merrill, G.K., 1960, Additional notes on vertical shafts in limestone caves: Bull. Nat. Speleo. Soc., v. 22(2), p. 101–105.

    Google Scholar 

  • Miller, T.E., 1981, Hydrochemistry, hydrology and morphology of the Caves Branch karst, Belize: Ph.D. thesis, McMaster Univ., Hamilton, Ont., Canada, 280 p.

    Google Scholar 

  • Moore, G.W., 1981, Manganese speleothems, in Proc. of the 8th Internat. Speleo. Cong. p. 642–644.

    Google Scholar 

  • Muller, P., and Sarvary, I., 1977, Some aspects of developments in Hungarian speleology theories during the last 10 years: Karsztes Barlang, Spec. Issue, p. 53–60.

    Google Scholar 

  • Mylroie, J.E., and Carew, J.L., 1986, Minimum duration for speleogenesis: Communications, 9 Cong. Internat. Speleo., v. 1, p. 249–251.

    Google Scholar 

  • Oilier, C.D., 1975, Coral Island geomorphology— the Trobriand Islands: Z. Geomorph., v. 19(2), p. 164–190.

    Google Scholar 

  • Palmer, A.N., 1975, The origin of maze caves: Bull. Nat. Speleo. Soc., v. 37(3), p. 56–76.

    Google Scholar 

  • Palmer, A.N., 1981, A geological guide to Mammoth Cave National Park: Teaneck, NJ, Zephyrus Press, 210 p.

    Google Scholar 

  • Palmer, A.N., 1984, Geomorphic interpretation of karst features: in LaFleur, R.G., ed., Groundwater as a Geomorphic Agent: London, Allen and Un- win, p. 173–209.

    Google Scholar 

  • Pasini, G., 1973, Sull’importanza speleogenetica dell’ “erosione antigravitativa,” Le Grotte d’ltalia v. 4, p. 297–326.

    Google Scholar 

  • Plummer, L.N., 1975, Mixing of seawater with calcium carbonate groundwater: quantitative studies in the geological sciences: Geol. Soc. Am. Mem. 142, p. 219–236.

    Google Scholar 

  • Plummer, L.N., Parkhurst, D.L., and Wigley, T.M.L., 1979, Critical review of the kinetics of calcite dissolution and precipitation, in Jenne, E.A., ed., Chemical modeling in aqueous systems: Washington, DC, Am. Chem. Soc., p. 537–573.

    Chapter  Google Scholar 

  • Plummer, L.N., Wigley, T.M.L., and Parkhurst, D.L., 1978, The kinetics of calcite dissolution in Co2- water systems at 5° to 60°C and 0.0 to 1.0 atm C02, Am. J. Sci., v. 278, p. 179–216.

    Article  Google Scholar 

  • Queen, J.M., Palmer, A.N., and Palmer, M.V., 1977, Speleogenesis in the Guadalupe Mountains, New Mexico: gypsum replacement of carbonate by brine mixing, in Proc. of the 7th Internat. Speleo. Cong., Sheffield, England, p. 333–336.

    Google Scholar 

  • Quinlan, J.F., Ewers, R.O., Ray, J.A., Powell, R.L., and Krothe, N.C., 1983, Groundwater hydrology and geomorphology of the Mammoth Cave region, Kentucky, and the Mitchell Plain, Indiana, in Shaver, R.H., and Sunderman, J.A., eds., Field trips in midwestern geology: Bloomington, IN, Geological Society of America and Indiana Geological Survey, p. 1–85.

    Google Scholar 

  • Racovitza, G.H., 1972, Sur la correlation entre revolution du climat et la dynamique des depots sou- terrains de glace de la grotte de Scarisoara: Trav. Inst. Speleo, “Emile Racovitza,” v. 11, p. 373–392.

    Google Scholar 

  • Renault, P., 1968, Contribution a l’etude des actions mechaniques et sedimentologiques dans la speleo- genese: Ann. Speleol., v. 23, p. 529–596.

    Google Scholar 

  • Rhoades, R., and Sinacori, N.M., 1941, Patterns of groundwater flow and solution: J. Geol., v. 49, p. 785–794.

    Article  Google Scholar 

  • Rhodes, D., Lantos, E.A., Lantos, J.A., Webb, R.J., and Owens, D.C. 1984, Pine Point ore bodies and their relationship to structure, dolomitization and karstification of the Middle Devonian barrier complex: Econ. Geol., v. 70, p. 991–1055.

    Article  Google Scholar 

  • Schoeller, H., 1962, Les eaux souterraines: Paris, Masson, 642 p.

    Google Scholar 

  • Schroeder, J., and Ford, D.C., 1983, Clastic sediments in Castleguard Cave, Columbia Icefields, Alberta, Canada: Arctic and Alpine Res., v. 15(4), p. 451–461.

    Article  Google Scholar 

  • Schwarcz, H.P., Harmon, R.S., Thompson, P., and Ford, D.C., 1976, Stable isotope studies of fluid inclusions in speleothems and their paleoclimatic significance: Geochimica et Cosmochimica Acta, v. 40, p. 657–665.

    Article  Google Scholar 

  • Skrivanek, F., and Rubin, J., 1978, Caves in Czechoslovakia: Prague, Academica, 132 p.

    Google Scholar 

  • Smart, C.C., and Brown, M.C., 1981, Some results and limitations in the application of hydraulic geometry to vadose stream passages, in Proc. of the 8th Internat. Speleo. Cong., Kentucky, USA, p. 724–725.

    Google Scholar 

  • Smith, D.I., and Atkinson, T.C., 1976, Process, landforms and climate in limestone regions, in Derbyshire, E. ed., Geomorphology and climate: London, Wiley, p. 369–409.

    Google Scholar 

  • Sorriaux, P., 1982, Contribution a l’etude de la sedimentation en milieu karstique: le systeme de. Niaux-Lombrives-Sabart, Pyrenees Ariegeoises: Thesis, 3rd cycle, Univ. Paul Sabatier, Toulouse, 255 p.

    Google Scholar 

  • Stumm, W., and Morgan, J.J., 1980, Aquatic chemistry: an introduction emphasizing equilibria in natural waters, 2nd edition: New York, Wiley, 780.

    Google Scholar 

  • Swinnerton, A.C., 1932, Origin of limestone cavers: Bull. Geol. Soc. Am. V. 43, P. 662–693.

    Google Scholar 

  • Waltham, A.C., 1986, China caves ’85: London, Royal Geographical Society, 60 p.

    Google Scholar 

  • Waltham, A.C., and Brook, D.B., 1980, Geomor- phological observations in the limestone caves of Gunung Mulu National Park,Sarawak:Trans.,Brit.Cave Res. Assoc.,v. 7(3), p. 123–140.

    Google Scholar 

  • Warwick, G.T., 1953, The origin of limestone caves, in Cullingford, C.H.D. ed., British caving: London, Routledge and Kegan Paul, p. 41–61.

    Google Scholar 

  • Weyl, P.K., 1958, Solution kinetics of calcite: J. Geol., v. 66, p. 163–176.

    Article  Google Scholar 

  • White, E.L. and White, W.B. 1969, Processes of cavern breakdown. Nat. Speleol. Soci. Am. Bulletin 31(4), p. 83–96.

    Google Scholar 

  • White, W.B., 1976, Cave minerals and speleothems, Chap. 8 in Ford, T.D., and Cullingford, C.H.D., eds., The science of speleology: London, Academic Press, p. 267–327.

    Google Scholar 

  • White, W.B., 1977, The role of solution kinetics in the development of karst aquifers, in J.S. Tolson, and Doyle, F.L., eds., Internat. Assoc. Hydrogeol., Mem. 12, p. 503–517.

    Google Scholar 

  • White, W.B., 1984, Rate processes: chemical kinetics and karst landform development, in R.G. LaFleur, ed., Groundwater as a geomorphic agent: London, Allen and Unwin, p. 227–248.

    Google Scholar 

  • Yonge, C.A., 1982, Stable isotope studies of water extracted from speleothems: Ph.D. thesis, McMaster Univ., Hamilton, Ont., Canada, 298 p.

    Google Scholar 

  • Zhang, Z., 1980, Karst types in China: Geo. Journal, v. 4, p. 541–570.

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1988 Springer-Verlag New York Inc.

About this chapter

Cite this chapter

Ford, D. (1988). Characteristics of Dissolutional Cave Systems in Carbonate Rocks. In: James, N.P., Choquette, P.W. (eds) Paleokarst. Springer, New York, NY. https://doi.org/10.1007/978-1-4612-3748-8_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-3748-8_2

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-0-387-96563-5

  • Online ISBN: 978-1-4612-3748-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics