Structure and Mechanism of Action of a Membrane-Bound Enzyme: Chloroplast Coupling Factor

  • Gordon G. Hammes

Abstract

In all organisms a transmembrane pH gradient is utilized as the source of free energy for the synthesis of ATP from ADP and Pi (1). The membrane-bound enzymes (coupling factors) that catalyze the synthesis and pump protons are remarkably similar from all sources: The basic structure consists of a ball on the surface of the membrane (F1) attached to a stalk (F0) that passes through the membrane. The minimal structure consists of five types of polypeptide chains in F1, probably in the stoichiometry α 3 β 3 γδε,and three types of polypeptide chains in F0, with the stoichiometry still controversial. F1 is an ATPase and contains all of the nucleotide binding sites but of course cannot make ATP catalytically when separated from the membrane. F0 is a hydrophobic structure that probably serves as the proton channel.

Keywords

Hydrolysis Anisotropy Tyro Sine Catalysis Polypeptide 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Mitchell, P. D. (1961) Nature 191: 144–148.PubMedCrossRefGoogle Scholar
  2. 2.
    Bruist, M. F., and Hammes, G. G. (1981) Biochemistry 20: 6298–6305.PubMedCrossRefGoogle Scholar
  3. 3.
    Kambouris, N. G., and Hammes, G. G. (1985) Proc. Natl. Acad. Sci. USA 82: 1950–1953.PubMedCrossRefGoogle Scholar
  4. 4.
    Amzel, L. M., McKinney, M., Naryanan, P., and Pederson, P. L. (1982) Proc. Natl. Acad. Sci. USA 79: 5852–5856.PubMedCrossRefGoogle Scholar
  5. 5.
    Hammes, G. G. (1981) In Protein-Protein Interactions, edited by C. Frieden and L. W. Nichol, pp. 257–287. Wiley, New York.Google Scholar
  6. 6.
    Dale, R. E., Eisinger, J., and Blumberg, W. E. (1979) Biophys. J. 26: 161–194.PubMedCrossRefGoogle Scholar
  7. 7.
    Richter, M. L., Snyder, B., McCarty, R. E., and Hammes, G. G. (1985) Biochemistry 24: 5755–5763.PubMedCrossRefGoogle Scholar
  8. 8.
    Cerione, R. A., and Hammes, G. G. (1982) Biochemistry 21: 745–752.PubMedCrossRefGoogle Scholar
  9. 9.
    Deters, D. W., Nelson, N., Nelson, H., and Racker, E. (1975) J. Biol. Chem. 250: 1041–1047.PubMedGoogle Scholar
  10. 10.
    Cantley, L. C., and Hammes, G. G. (1976) Biochemistry 15: 9–14.PubMedCrossRefGoogle Scholar
  11. 11.
    McCarty, R. E., and Fagan, J. (1973) Biochemistry 12: 1503–1507.PubMedCrossRefGoogle Scholar
  12. 12.
    Farron, F., and Racker, E. (1970) Biochemistry 9: 3829–3836.PubMedCrossRefGoogle Scholar
  13. 13.
    Holowka, D. A., and Hammes, G. G. (1977) Biochemistry 16: 5538–5545.PubMedCrossRefGoogle Scholar
  14. 14.
    Nalin, C. M., Snyder, B., and McCarty, R. E. (1985) Biochemistry 24: 2318–2324.PubMedCrossRefGoogle Scholar
  15. 15.
    Cerione, R. A., McCarty, R. E., and Hammes, G. G. (1983) Biochemistry 22: 769–776.PubMedCrossRefGoogle Scholar
  16. 16.
    Snyder, B., and Hammes, G. G. (1984) Biochemistry 23: 5787–5795.PubMedCrossRefGoogle Scholar
  17. 17.
    Snyder, B., and Hammes, G. G. (1985) Biochemistry 24: 2324–2331.PubMedCrossRefGoogle Scholar
  18. 18.
    Schinkel, J. E., and Hammes, G. G. (1986) Biochemistry 25: 4066–4071.PubMedCrossRefGoogle Scholar
  19. 19.
    Cantley, L. C., and Hammes, G. G. (1975) Biochemistry 14: 1968–1975.Google Scholar
  20. 20.
    Bruist, M. F., and Hammes, G. G. (1982) Biochemistry 21: 3370–3377.PubMedCrossRefGoogle Scholar
  21. 21.
    Kohlbrenner, W. E., and Boyer, P. D. (1983) J. Biol. Chem. 258: 10881–10886.PubMedGoogle Scholar
  22. 22.
    Boyer, P. D., and Kohlbrenner, W. E. (1981) In Energy Coupling in Photosynthesis, edited by B. R. Selman and S. Selman-Reimer, pp. 231–240. Elsevier/North Holland, New York.Google Scholar
  23. 23.
    Gresser, M. J., Myers, J. A., and Boyer, P. D. (1982) J. Biol. Chem. 257: 12030–12038.PubMedGoogle Scholar
  24. 24.
    Hammes, G. G. (1982) Proc. Natl. Acad. Sci. USA 79: 6881–6884.PubMedCrossRefGoogle Scholar
  25. 25.
    Leckband, D., and Hammes, G. G. (1986) Biochemistry 26: 2306–2312.CrossRefGoogle Scholar
  26. 26.
    Racker, E., and Stoeckenius, W. (1974) J. Biol. Chem. 249: 662–663.PubMedGoogle Scholar
  27. 27.
    Krupinski, J., and Hammes, G. G. (1986) Proc. Natl. Acad. Sci. USA 83: 4233–4237.PubMedCrossRefGoogle Scholar
  28. 28.
    Dewey, T. G., and Hammes, G. G. (1981) Proc. Natl. Acad. Sci. USA 78: 7422–7425.PubMedCrossRefGoogle Scholar
  29. 29.
    Dewey, T. G., and Hammes, G. G. (1981) J. Biol. Chem. 256: 8941–8946.PubMedGoogle Scholar
  30. 30.
    Takabe, T., and Hammes, G. G. (1981) Biochemistry 20: 6859–6864.PubMedCrossRefGoogle Scholar
  31. 31.
    Krupinski, J., and Hammes, G. G. (1985) Biochemistry 24: 6963–6972.PubMedCrossRefGoogle Scholar
  32. 32.
    Senior, A. E., and Wise, J. G. (1983) J. Membr. Biol. 73: 105–124.PubMedCrossRefGoogle Scholar
  33. 33.
    Walker, J. E., Saraste, M., and Gay, N. J. (1984) Biochim. Biophys. Acta 768: 164–200.PubMedGoogle Scholar
  34. 34.
    Pederson, P. L., and Amzel, L. M. (1985) In Achievements and Perspectives of Mitochondrial Research, Vol. 1, pp. 169–189. Elsevier, New York.Google Scholar
  35. 35.
    Jencks, W. P. (1980) Adv. Enzymol. 51: 75–106.PubMedGoogle Scholar

Copyright information

© Springer-Verlag New York Inc. 1988

Authors and Affiliations

  • Gordon G. Hammes

There are no affiliations available

Personalised recommendations