Advertisement

Role of Multienzyme Complexes in the Integration of Cellular Metabolism

  • B. I. Kurganov

Abstract

A large number of degradation processes provide the energetic needs of the living organism and its need of “building materials.” The synthesis of biomacromolecules is a result of numerous biosynthetic reactions. The striking peculiarity of the living system lies in the existence of rather fine and effective regulatory mechanisms that bring each metabolic process to conform with the needs of the whole organism. Thus cellular metabolism represents an integrated system of processes coordinated in space and time. The elucidation of the principles of integration of cellular metabolism is one of the important problems of modern biological chemistry.

Keywords

Erythrocyte Membrane Cellular Metabolism Pyruvate Kinase Glycolytic Enzyme Enzyme Molecule 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Kurganov, B. I. (1982) Allosteric Enzymes. Kinetic Behaviour. Wiley, New York.Google Scholar
  2. 2.
    Moses, V. (1978) In Microenvironments and Metabolic Compartmentation, edited by P. A. Srere and R. W. Estabrook, p. 169. Academic Press, New York.Google Scholar
  3. 3.
    Mowbray, J., and Moses, V. (1976) Eur. J. Biochem. 66: 25PubMedCrossRefGoogle Scholar
  4. 4.
    Green, D. E., Murer, E., Hultin, H. O., Richardson, S. H., Salmon, B., Brierly, C. P., and Baum, H. (1965) Arch. Biochem. Biophys. 112: 635.PubMedCrossRefGoogle Scholar
  5. 5.
    Clarke, F. M., Stephan, P., and Morton, D. J. (1985) In Regulation of Carbohydrate Metabolism, edited by R. Biethner. CRG Press, New York.Google Scholar
  6. 6.
    Kurganov, B. I., (1984) J. Theor. Biol. 111: 707.PubMedCrossRefGoogle Scholar
  7. 7.
    Kurganov, B. I., Sugrobova, N. P., and Mil’man, L. S. (1985) J. Theor. Biol. 116: 509.PubMedCrossRefGoogle Scholar
  8. 8.
    Dorst, H-J., and Schubert, D. (1979) Hoppe Seyler Z. Physiol. Chem. 360: 1605.PubMedCrossRefGoogle Scholar
  9. 9.
    Pappert, G., and Schubert, D. (1983) Biochim. Biophys. Acta 730:32.Google Scholar
  10. 10.
    Klingenberg, M. (1981) Nature 290: 449.PubMedCrossRefGoogle Scholar
  11. 11.
    Benz, R., Tosteson, M. T., and Schubert, D. (1984) Biochim. Biophys. Acta 775: 347.Google Scholar
  12. 12.
    Kurganov, B. I. (1986) J. Theor. Biol. 119: 445.PubMedCrossRefGoogle Scholar
  13. 13.
    Passing, R., and Schubert, D. (1983) Hoppe Seyler Z. Physiol. Chem. 364: 873.PubMedCrossRefGoogle Scholar
  14. 14.
    Harrison, D. G., and Long, C. (1968) J. Physiol. (Lond.) 198: 367.Google Scholar
  15. 15.
    Tang, L. G., Schomaker, E., and Wiesmann, W. P. (1984) Biochim. Biophys. Acta 772: 235.Google Scholar

Copyright information

© Springer-Verlag New York Inc. 1988

Authors and Affiliations

  • B. I. Kurganov

There are no affiliations available

Personalised recommendations