Advertisement

Mechanistic Studies on DNA Polymerase I

  • V. Mizrahi
  • P. A. Benkovic
  • R. D. Kuchta
  • M. C. Young
  • K. A. Johnson
  • S. J. Benkovic

Abstract

The multifunctional DNA polymerase I (Pol I) of Escherichia coli has served as the most widely studied model for describing, at the molecular level, certain enzymatic processes involved in the replication of DNA (1). In addition to its polymerase activity, the enzyme also catalyzes DNA degradation by distinct 5′ → 3′and 3′ → 5′ exonuclease activities, as well as by net pyrophosphorolysis. Extensive kinetic (2, 3) and stereochemical (4, 5) studies of the various activities have elucidated the important underlying features of the phosphodiester bond-forming and bond-breaking reactions. In addition, the availability of a 3-Å resolution x-ray structure of the large proteolytic (Klenow) fragment of Pol I (6) has generated considerable interest in the area of structure—function assignment (7).

Keywords

Polymerase Activity Reaction Cycle Kinetic Mechanism Exonuclease Activity Klenow Fragment 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Kornberg, A. (1980) DNA Replication. W. H. Freeman, San Francisco.Google Scholar
  2. 2.
    Bryant, F. F., Johnson, K. A., and Benkovic, S. J. (1983) Biochemistry 22: 3537–3546.PubMedCrossRefGoogle Scholar
  3. 3.
    Mizrahi, V., Hennie, R. N., Manlier, J., Johnson, K. A., and Benkovic, S. J. (1985) Biochemistry 24: 4010–4018.PubMedCrossRefGoogle Scholar
  4. 4.
    Burgers, P. M. J., and Eckstein, F. (1979) J. Biol. Chem. 254: 6889–6893.PubMedGoogle Scholar
  5. 5.
    Gupta, A. F., and Benkovic, S. J. (1985) Biochemistry 23: 5874–5881.CrossRefGoogle Scholar
  6. 6.
    Ollis, D. L., Brick, P., Hamlin, R., Xuong, N. G., and Steitz, T. A. (1955) Nature 313: 762–766.CrossRefGoogle Scholar
  7. 6.
    Ollis, D. L., Brick, P., Hamlin, R., Xuong, N. G., and Steitz, T. A. (1955) Nature 313: 762–766.CrossRefGoogle Scholar
  8. 8.
    Mizrahi, V., Benkovic, P. A., and Benkovic, S. J. (1986) Proc. Natl. Acad. Sci. USA 83: 231–235.PubMedCrossRefGoogle Scholar
  9. 9.
    Loeb, L. A., Dube, D. K., Beckman, R. A., Koplitz, M., and Gopinathan, K. P. (1981) J. Biot. Chem. 256: 3978–3987.Google Scholar
  10. 10.
    Gupta, A., DeBrosse, C., and Benkovic, S. (1982) J. Biol. Chem. 257: 7689–7692.PubMedGoogle Scholar
  11. 11.
    Brutlag, D., and Kornberg, A. (1972) J. Biol. Chem. 247: 241–248.PubMedGoogle Scholar
  12. 12.
    Bessman, M. J., Muzyczka, N., Goodman, M. F., and Schnaar, R. L. (1974) J. Mol. Biol. 88: 409–421.PubMedCrossRefGoogle Scholar
  13. 13.
    Galas, D. J., and Branscomb, E. W. (1978) J. Mol. Biol. 124: 653–687.PubMedCrossRefGoogle Scholar
  14. 14.
    Clayton, L. K., Goodman, M. F., Branscomb, E. W., and Galas, D. J. (1979) J. Biol. Chem. 254: 1902–1912.PubMedGoogle Scholar
  15. 15.
    Ferscht, A. R., Knill-Jones, J. W., and Tsui, W-C. (1982) J. Mol. Biol. 156: 37–51CrossRefGoogle Scholar
  16. 16.
    Gupta, A. P., Benkovic, P. A., and Benkovic, S. J. (1984) Nucleic Acids Res. 12: 5892–5911.Google Scholar
  17. 17.
    McClure, W. R., and Jovin, T. M. (1975) J. Biol. Chem. 250: 4073.PubMedGoogle Scholar

Copyright information

© Springer-Verlag New York Inc. 1988

Authors and Affiliations

  • V. Mizrahi
  • P. A. Benkovic
  • R. D. Kuchta
  • M. C. Young
  • K. A. Johnson
  • S. J. Benkovic

There are no affiliations available

Personalised recommendations