Skip to main content

Peptide Transport in Candida albicans: Implications for the Development of Antifungal Agents

  • Chapter

Part of the book series: Current Topics in Medical Mycology ((CT MYCOLOGY,volume 2))

Abstract

The yeast Candida albicans typically exists in a symbiotic relationship with humans (68). In the event, however, that the host is immunologically weakened upon challenge by disease or medical therapy, C. albicans can develop into a virulent pathogen. For many years this microorganism has gained increasing prominence as an opportunistic pathogen in hospital-associated infections and in compromised patients. Recently, this yeast has been documented as an agent in the morbidity and mortality of patients suffering from acquired immune deficiency syndrome (AIDS)(18).

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Allen JG, Atherton FR, Hall MJ, Hassall CH, Holmes W, Lambert RW, Nisbet LJ, Ringrose PS: Phosphonopeptides as antibacterial agents: Alaphosphin and related phosphonopeptides. Antimicrob Agents Chemother 15:684–695, 1979.

    PubMed  CAS  Google Scholar 

  2. Ames BN, Ames GF, Young JD, Isuchiya D, Lecocq J: Illicit transport: The oligopeptide permease. Proc Natl Acad Sci USA 70:456–458, 1973.

    Article  PubMed  CAS  Google Scholar 

  3. Andrews JC, Short SA: Genetic analysis of Escherichia coll oligopeptide transport mutants. J Bacterial 161:484–492, 1985.

    CAS  Google Scholar 

  4. Atherton FR, Hall MJ, Hassall CH, Lambert RW, Lloyd WJ, Lord AV, Ringrose PS, Westmacott : Phosphonopeptides as substrates for peptide transport systems and peptidases of Escherichia coll . Antimicrob Agents Chemother 24:522–528, 1983.

    PubMed  CAS  Google Scholar 

  5. Azuma T, Saita T, Isono K: Polyoxin analogs, III. Synthesis and biological activity of aminoacyl derivatives of polyoxin C and L. Chem Pharma Bull 25:1740–1748,1977.

    CAS  Google Scholar 

  6. Barak Z, Gilvarg C: Peptide transport, Eisenberg H Katchalski-Katzir E Manson LA : Biomembranes, vol. 7. New York, Plenum Press, 1975, 167–218.

    Google Scholar 

  7. Becker JM, Covert NL, Shenbagamurthi P, Steinfeld AS, Naider F: Polyoxin D inhibits growth of zoopathogenic fungi. Antimicrob Agents Chemother 23:926–929, 1983.

    PubMed  CAS  Google Scholar 

  8. Becker JM, Naider F: Peptide transport in yeast: Uptake of radioactive trimethionine in Saccharomyces cerevisiae. Arch Biochem Biophys 278:245—255, 1977.

    Google Scholar 

  9. Becker JM, Naider F: Transport and utilization of peptides by yeast, Payne JW : Microorganisms and Nitrogen Sources. Chichester, United Kingdom, Wiley & Sons, 1980, 258–279.

    Google Scholar 

  10. Becker JM, Steinfeld A, Naider F: Novel Approach to the Development of Anticandidal Drugs. Proc Fourth International Conf Mycoses, Pan American Health Organization Scientific Publication No. 356, 1978, 303-308.

    Google Scholar 

  11. Bell G, Payne GM, Payne JW: Monitoring enzyme synthesis as a means of studying peptide transport and utilization in Escherichia coli. J Gen Microbiol 98:485–491, 1977.

    PubMed  CAS  Google Scholar 

  12. Bormann C, Huhn W, Zahner H, Rathman R, Huhn H, Konig WA: Metabolic products of microorganisms: New nikkomycins produced by mutants of Streptomyces tendae. J Antibiot 38:9–16, 1985.

    PubMed  CAS  Google Scholar 

  13. Bowers B, Levin G, Cabib E: Effect of polyoxin D on chitin synthesis and septum formation in Saccharomyces cerevisiae. J Bacterial 119:564–575, 1974.

    CAS  Google Scholar 

  14. Braun P, Calderone RA: Chitin synthesis in Candida albicans: Comparison of yeast and hyphal forms. J Bacterial 133:1472–1477, 1978.

    CAS  Google Scholar 

  15. Braun PC, Calderone RA: Regulation and solubilization of Candida albicans chitin synthetase. J Bacterial 14:666–670, 1979.

    Google Scholar 

  16. Cabib E, Roberts R, Bowers B: Synthesis of the yeast cell wall and its regulation. Ann Rev Biochem 51:763–793, 1982.

    Article  PubMed  CAS  Google Scholar 

  17. Cascieri T, Mallette MF: New method for study of peptide transport in bacteria. Appl Microbiol 27:457–463, 1974.

    PubMed  CAS  Google Scholar 

  18. Chandler FW: Pathology of the mycoses in patients with acquired immunodeficiency syndrome (AIDS), McGinnis MR : Current Topics in Medical Mycology, Vol. 1. New York, Springer-Verlag, 1985, 1–23.

    Google Scholar 

  19. Chattaway FW, Holmes MR, Barlow AJE: Cell wall composition of the mycelial and blastospore forms of Candida albicans. J Gen Microbiol 51:367–376, 1968.

    PubMed  CAS  Google Scholar 

  20. Chen C, Chin JE, Ueda K, Clark DP, Pastan I, Gottesman MM, Roninson IB: Internal duplication and homology wth bacterial transport proteins in the mdr 1 (P. glycoprotein) gene from multidrug-resistant human cells. Cell 47:381–389, 1986.

    Article  PubMed  CAS  Google Scholar 

  21. Chmara H, Smulkowski M, Borowski E: Growth inhibitory effects of amidotranferase inhibition in Candida albicans by epoxy-peptides. Drugs Under Exp Clin Res 6:7–14, 1980.

    CAS  Google Scholar 

  22. Chvatchko Y, Howald I, Riezman H: Two yeast mutants defective in endocytosis are defective in pheromone response. Cell 46:355–364, 1986.

    Article  PubMed  CAS  Google Scholar 

  23. Cowell JL: Energetics of glycylglycine transport in Escherichia coli. J Bacterial 120:139–146, 1974.

    CAS  Google Scholar 

  24. Davies MB: Peptide uptake in Candida albicans. J Gen Microbiol 114:181–186, 1980.

    Google Scholar 

  25. Dahn U, Hagenmaier H, Konig WA, Wolf G, Zahner H: Stoffwechselprodukte von mikroorganismen 154 Mitteilung. Nikkomycin ein neuer Hemmstoff der Chitinsynthase bei Pilzen. Arch Microbiol 197:143–160, 1976.

    Article  Google Scholar 

  26. Emmer G, Ryder NS, Grassberger MA: Synthesis of new polyoxin analogs and their activity against chitin synthetase from Candida albicans. J Med Chem 28:278–281, 1985.

    Article  PubMed  CAS  Google Scholar 

  27. Fickel TE, Gilvarg C: Transport of impermeant substances in Escherichia coli by way of oligopeptide permease. Nature (London) 241:161–163, 1973.

    CAS  Google Scholar 

  28. Fleet GH: Composition and structure of yeast cell wall in, McGinnis MR : Current Topics in Medical Mycology. New York, Springer-Verlag, 1985, 24–56..

    Google Scholar 

  29. Gilvarg C: Portage transport, Ninet L Bost PE Bouanchaud DH Florent J : The Future of Antibiotherapy and Antibiotic Research. New York, Academic Press, 1981.

    Google Scholar 

  30. Gooday GW, Gow NAR: A model of the hyphal septum of Candida albicans during germ tube formation. Exp My col 1:370–373, 1983.

    Google Scholar 

  31. Gross P, Croop J, Housman D: Mammalian multidrug resistance gene: Complete cDNA sequence indicates strong homology to bacterial transport proteins. Cell 47:371–380, 1986.

    Article  Google Scholar 

  32. Higgins CF, Hardie MM, Jamieson D, Powell LM: Genetic map of the opp (oligopeptide permease) locus of Salmonella typhimurium. J Bacterial 153:830–836, 1983.

    CAS  Google Scholar 

  33. Higgins CF, Payne JW: Characterization of active dipeptide transport by germinating barley embryos: Effects of pH and metabolic inhibitors. Planta 136:71–76, 1977.

    Article  CAS  Google Scholar 

  34. Hilenski LL, Naider F, Becker JM: Polyoxin D inhibits colloidal gold-wheat germ agglutinin labelling of chitin in dimorphic forms of Candida albicans. J Gen Microbiol 132:1441–1451, 1986.

    PubMed  CAS  Google Scholar 

  35. Hori M, Kakiki K, Misato T: Antagonistic effect of dipeptides on the uptake of polyoxin A by Alternaria kikuchiana. J Pest Sci 2:139–149, 1977.

    Article  CAS  Google Scholar 

  36. Hori M, Kakiki K, Suzuki S, Misato T: Studies on the mode of action of polyoxins. III. Relation of polyoxin structure to chitin synthetase inhibition. Agric Biol Chem 35:1280–1291, 1971.

    Article  CAS  Google Scholar 

  37. Hruby VJ Rich DH (eds): Peptides Structure and Function: Proceedings of the Eighth American Peptide Symposium. Rockford, IL, Pierce Chemical Company, 1983.

    Google Scholar 

  38. Isono K, Azuma T, Suzuki S: Polyoxin analogs. I. Synthesis of aminoacyl derivatives of 5’-amino-5’deoxyuridine. Chem Pharmacol Bull 19:505–512, 1971.

    CAS  Google Scholar 

  39. Isono K, Nagatsu J, Kawashima Y, Suzuki S: Studies on polyoxins, antifungal antibiotics. I. Isolation and characterization of polyoxins A and B. Agric Biol Chem 29:848–854, 1965.

    Article  CAS  Google Scholar 

  40. Isono K, Nagatsu J, Kobinata K, Sasaki K, Suzuki S: Studies on polyoxins, antifungal antibiotics, V. Isolation and characterization of polyoxins C, D, E, F, G, H, and I. Agric Biol Chem 31:190–199, 1967.

    Article  CAS  Google Scholar 

  41. Jackson MB, Becker JM, Steinfeld A, Naider F: Oligopeptide transport in proline peptidase mutants of Salmonella typhimurium. J Biol Chem 251:5300–5309,1976.

    PubMed  CAS  Google Scholar 

  42. Jayakumar A, Singh M, Prasad R: Characteristics of proline transport in normal and starved cells of Candida albicans. Biochim Biophys Ada 514:348–355, 1978.

    Article  CAS  Google Scholar 

  43. Keller FA, Cabib E: Chitin and yeast budding. Properties of chitin synthetase from Saccharomyces carlsbergensis. J Biol Chem 246:160–166, 1971.

    PubMed  CAS  Google Scholar 

  44. Kenig M, Abraham EP: Antimicrobial activities and antagonists of bacilysin and anticapsin. J Gen Microbiol 94:37–45, 1976.

    PubMed  CAS  Google Scholar 

  45. Kessel D, Lubin M: On the distinction between peptidase activity and peptide transport. Biochim Biophys Acta 71:656–663, 1963.

    Article  PubMed  CAS  Google Scholar 

  46. Kingsbury WD, Boehm JC, Mehta RJ, Grappel SF: Transport of antimicrobial agents using peptide carrier systems: Anticandidal activity of mfluorophenylalanine-peptide conjugates. J Med Chem 26:1725–1729, 1983.

    Article  PubMed  CAS  Google Scholar 

  47. Kingsbury WD, Boehm JC, Mehta RJ, Grappel SF, Gilvarg C: A novel peptide delivery system involving peptidase activated prodrugs as antimicrobial agents. Synthesis and biological activity of peptidyl derivatives of 5-fluorouracil. J Med Chem 27:1447–1451, 1984.

    Article  PubMed  CAS  Google Scholar 

  48. Kingsbury WD, Boehm JC, Perry D, Gilvarg C: Portage of various compounds into bacteria by attachment to glycine residues in peptides. Proc Nat I Acad Sci ra,4 81:4573–4576, 1984.

    Article  CAS  Google Scholar 

  49. Kobinata K, Uramoto M, Nishii M, Kusakabe H, Nakamura G, Isono K: Neopolyoxins A, B, and C, new chitin synthetase inhibitors. Agric Biol Chem 44:1709–1711, 1980.

    Article  CAS  Google Scholar 

  50. Koenig WA, Loffler W, Meyer-Glauner WH, Uhman R: L-arginyl-D-allo threonyl-L-phenylalanin ein aminosaureantagonist aus dem pilz Keratinophyton terrreum. Chem Berichete 106:816–823, 1973.

    Article  CAS  Google Scholar 

  51. Lichliter WD, Naider F, Becker JM: Basis for the design of anticandidal agents from studies of peptide utilization in Candida albicans. Antimicrob Agents Chemother 10:483–490, 1976.

    PubMed  CAS  Google Scholar 

  52. Logan DA, Becker JM, Naider F: Peptide transport in Candida albicans. J Gen Microbiol 114:179–186, 1979.

    PubMed  CAS  Google Scholar 

  53. Marder R, Rose R, Becker JM, Naider F: Isolation of a peptide transportdeficient mutant of yeast. J Bacteriol 136:1174–1177, 1978.

    PubMed  CAS  Google Scholar 

  54. Matthews DM: Intestinal absorption of peptides. Physiol Rev 55:537–608, 1975.

    PubMed  CAS  Google Scholar 

  55. Matthews DM, Payne JW: Transmembrane transport of small peptides. Curr Top Membr Transp 14:331–425, 1980.

    CAS  Google Scholar 

  56. McCarthy PJ, Nisbet LJ, Boehm JC, Kingsbury WD: Multiplicity of peptide permeases in Candida albicans: Evidence from novel chromophoric peptides. J Bacterial 162:1024–1029, 1985.

    CAS  Google Scholar 

  57. McCarthy PJ, Troke PF, Gull K: Mechanism of action of nikkomycin and the peptide transport system of Candida albicans. J Gen Microbiol 131: 775–780,1985.

    PubMed  CAS  Google Scholar 

  58. Medoff G, Brajtburg J, Kobayshi GS: Antifungal agents useful in the therapy of systemic fungal infection. Annu Rev Pharmacol Toxicol 23:3030–330, 1983.

    Article  Google Scholar 

  59. Mehta RJ, Kingsbury WD, Valenta J, Actor P: Anti-Candida activity of polyoxin: Example of peptide transport in yeasts. Antimicrob Agents Chemother 25:373–374, 1984.

    PubMed  CAS  Google Scholar 

  60. Meyer-Glauner W, Bernard E, Armstrong D, Merrifield B: The antifungal activity of carrier peptides, L-arginyl-X-L-phenylalanine, containing amino acid antagonists or atypical non-biogenic Z)-amino acids in the central position. Zbl Bakt Hyg Orig A 252:274–278, 1982.

    CAS  Google Scholar 

  61. Milewski S, Chmara H, Borowski E: Growth inhibitory effect of antibiotic tetaine on yeast and mycelial forms of Candida albicans. Arch Microbiol 135:130–136, 1983.

    Article  PubMed  CAS  Google Scholar 

  62. Mitani M, Inoue Y: Antagonists of antifungal substance polyoxin. J Antibiot 21:492–496, 1968.

    PubMed  CAS  Google Scholar 

  63. Moneton P, Sarthou P, LeGoffic F: Role of the nitrogen source in peptide transport in Saccharomyces cerevisiae. FEMS Microbiol Lett 36:95–98, 1986.

    Article  CAS  Google Scholar 

  64. Moneton P, Sarthou P, LeGoffic F: Transport and hydrolysis of peptides in Saccharomyces cerevisiae. J Gen Microbiol 132:2147–2153, 1986.

    PubMed  CAS  Google Scholar 

  65. Naider F, Shenbagamurthi P, Steinfeld AS, Smith HA, Boney C, Becker JM: Synthesis and biological activity of tripeptidyl polyoxins as antifungal agents. Antimicrob Agents Chemother 24:787–796, 1983.

    PubMed  CAS  Google Scholar 

  66. Nisbet TM, Payne JW: Specificity of peptide uptake in Saccharomyces cerevisiae and isolation of a bacilysin-resistant, peptide transport deficient mutant. FEMS Microbiol Lett 7:193–196, 1979.

    Article  Google Scholar 

  67. Nisbet TM, Payne JW: Peptide uptake in Saccharomyces cerevisiae. Characteristics of a transport system shared by dipeptides and oligopeptides. J Gen Microbiol 115:127–133, 1979.

    CAS  Google Scholar 

  68. Odds FC: Candida and Candidosis. Baltimore, University Park, Press, 1979.

    Google Scholar 

  69. Payne JW: Transport and utilization of peptides by bacteria, Payne JW : Microorganisms and Nitrogen Sources. Chichester, United Kingdom, Wiley & Sons, 1980, 211–256.

    Google Scholar 

  70. Payne JW, Bell G: Direct determination of the properties of peptide transport systems in Escherichia coli using a fluorescent labelling procedure. J Bacterial 137:447–455, 1979.

    CAS  Google Scholar 

  71. Payne JW, Gilvarg C: Transport of peptides in bacteria, Rosen BP : Bacterial Transport. New York, Marcel Dekker, 1978, 325–383.

    Google Scholar 

  72. Payne JW, Nisbet TM: Limitations to the use of radioactively labeled substrates for studying peptide transport in microorganisms. FEBS Lett 119:73–76, 1980.

    Article  PubMed  CAS  Google Scholar 

  73. Payne JW, Nisbet TM: Continuous monitoring of substrate uptake by microorganisms using fluorescamine: Application to peptide transport by Saccharomyces cerevisiae and Streptococcus faecalis. J Appl Biochem 3:447–458, 1981.

    CAS  Google Scholar 

  74. Payne J, Shallow DA: Studies on drug targeting in the pathogenic fungus Candida albicans: Peptide transport mutants resistant to polyoxins, nikkomycins, and bacilysin. FEMS Microbiol Lett 28:55–60, 1985.

    Article  CAS  Google Scholar 

  75. Riezman H, Chvatchko Y, Dulic V: Endocytosis in yeast. Trends Biochem Sci 11:325–328, 1986.

    Article  CAS  Google Scholar 

  76. Sarthou P, Gonneau M, Le Goffic F: Photaffinity inhibition of peptide transport in yeast. Biochem Biophys Res Commun 110:884–889, 1983.

    Article  PubMed  CAS  Google Scholar 

  77. Shenbagamurth P, Smith HA, Becker JM, Naider F: Synthesis and biological properties of chitin synthetase inhibitors resistant to cellular peptidases. J Med Chem 29:802–808, 1986.

    Article  Google Scholar 

  78. Shenbagamurthi P, Smith HA, Becker JM, Steinfeld A, Naider F: Design of anticandidal agents: Synthesis and biological properties of analogues of polyoxin L .J Med Chem 26:1518–1522, 1983.

    Article  PubMed  CAS  Google Scholar 

  79. Smith HA, Shenbagamurthi P, Naider F, Kundu B, Becker JM: Hydrophobic polyoxins are resistant to intracellular degradation in Candida albicans. Antimicrob Agents Chemother 29:33–39, 1986.

    PubMed  CAS  Google Scholar 

  80. Steinfeld AS, Naider F, Becker JM: Synthesis and biological studies of 5-fluorocytosine conjugates as antifungal agents. J Med Chem 22:1104–1109,1979.

    Article  PubMed  CAS  Google Scholar 

  81. Sullivan PA, Yin CY, Molley C, Templeton MD, Shepherd M: An analysis of the metabolism and cell wall composition of Candida albicans during germ-tube formation. Can J Microbiol 29:1514–1525, 1983.

    Article  PubMed  CAS  Google Scholar 

  82. Ti JS, Steinfeld As, Naider F, Gulumoglu A, Lewis SV, Becker JM: Anticandidal activity of pyrimidine-peptide conjugates. J Med Chem 23:913–918, 1980.

    Article  PubMed  CAS  Google Scholar 

  83. Ugolev AM, DeLaey P: Membrane digestion, a concept of enzymic hydrolysis on cell membranes. Biochim Biophys Acta 300:105–128, 1973.

    PubMed  CAS  Google Scholar 

  84. Uramoto M, Kobinata K, Isono K, Higashijima T, Miyazawa T, Jenkins EE, McCloskey JA: Structure of neopolyoxins A, B, and C. Tetrahedron Lett 21: 3395–3399, 1980.

    Article  CAS  Google Scholar 

  85. Uramoto M, Kobinata K, Isono K, Higashijima T, Miyazawa T, Jenkins EE, McCloskey JA: Structure of neopolyoxins A, B, and C. Tetrahedron Lett 38: 1599–1603, 1982.

    CAS  Google Scholar 

  86. Wolfinbarger L, Marzluf GA: Specificity and regulation of peptide transport in Neurospora crassa. Arch Biochem Biophys 171:631–644, 1979.

    Google Scholar 

  87. Yadan JC, Gonneau M, Sarthou P, LeGoffic F: Sensitivity to Nikkomycin Z in Candida albicans: Role of peptide permeases. J Bacterial 160:884–888, 1984.

    CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1988 Springer-Verlag New York Inc.

About this chapter

Cite this chapter

Naider, F., Becker, J.M. (1988). Peptide Transport in Candida albicans: Implications for the Development of Antifungal Agents. In: McGinnis, M.R. (eds) Current Topics in Medical Mycology. Current Topics in Medical Mycology, vol 2. Springer, New York, NY. https://doi.org/10.1007/978-1-4612-3730-3_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-3730-3_5

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4612-8323-2

  • Online ISBN: 978-1-4612-3730-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics